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ABSTRACT. This paper classifies the blocks of the truncated q-Schur algebras of type A
which have as weight poset an arbitrary cosaturated set of partitions.

1. INTRODUCTION

In this paper we classify the blocks of the truncated q-Schur algebras of type A. The
truncated Schur algebras are a natural family of quasi-hereditary algebras obtained from
the q-Schur algebras by applying “Schur functors”. These algebras include, as special
cases, the usual Schur algebras Sk,q(n, r). Our main result gives a relatively quick and
easy classification of the blocks of all of these algebras.

We think it quite remarkable that there is a uniform and relatively simple classification
of the blocks of all of the truncated q-Schur algebras. As with the original classification of
the blocks of the q-Schur algebra Sk,q(n, n) [8], the main tool that we use is the Jantzen
sum formula, however, the new theme which permeates this paper is that the Jantzen co-
efficients, the integers which appear in the Jantzen sum formula, determine much of the
representation theory. For example, the blocks correspond to the combinatorial “linkage
classes” of partitions determined by the non-zero Jantzen coefficients.

The proof of the classification of blocks of the Schur algebras that we give is new,
both for Sk,q(n, n) and more generally for the algebras Sk,q(n, r) considered in [1, 3].
Throughout our focus is on the combinatorics of the Jantzen coefficients which has not
been considered before. As with the arguments in [1,3,8], the strategy is to reduce to blocks
which contain a unique maximal partition. Following Donkin, the arguments of [1, 3]
use translation functors to make these reductions whereas we achieve them, slightly more
quickly and in greater generality, using just the combinatorics of the Jantzen coefficients.
The key point from our perspective is to understand the partitions which contain only
horizontal hooks (Definition 3.12). It turns out that these partitions classify the projective
indecomposable Weyl modules for the truncated Schur algebras in characteristic zero.

To state our main result recall that a partition µ of r is a non-increasing sequence of
non-negative integers such that |µ| = µ1 +µ2 + · · · = r. If µ is a partition then the length
of µ is the smallest integer `(µ) such that µi = 0 for i > `(µ). If ` = `(µ) then we omit
trailing zeros and write µ = (µ1, . . . , µ`).

If λ and µ are two partitions of r then λ dominates µ, and we write λ D µ, if
s∑
i=1

λi ≥
s∑
i=1

µi,

for all s ≥ 0. Let Λr be the set of all partitions of r. A subset Λ of Λr is cosaturated if
whenever λ ∈ Λ and µ D λ then µ ∈ Λ.
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Let k be a field of characteristic p ≥ 0 and suppose that 0 6= q ∈ k and that Λ is a
cosaturated set of partitions of r. For each partition µ of r there is a permutation module
M(µ) for the Iwahori-Hecke algebra Hk,q(r) of the symmetric group Sr. (For more
details see, for example, [11, Chapter 3].) The truncated q-Schur algebra with parameter
q ∈ k and weight poset Λ is the endomorphism algebra

Sk,q(Λ) = EndHk,q(r)

(⊕
µ∈Λ

M(µ)
)
.

The algebra Sk,1(Λr) is Morita equivalent to the “classical” Schur algebra [6].
The Schur algebras Sk,q(Λ) are cellular and quasi-hereditary by [11, Exercise 4.13],

with weight poset Λ ordered by dominance. Thus, for each partition µ ∈ Λ there is
a Weyl module, or standard module, ∆µ

k = ∆µ
k(Λ). When Sk,q(Λ) is semisimple the

Weyl modules {∆µ
k | µ ∈ Λ } are a complete set of pairwise non-isomorphic irreducible

Sk,q(Λ)-modules.
To describe the blocks of Sk,q(Λ) let e ∈ {0} ∪ {2, 3, . . . } be minimal such that 1 +

q + · · ·+ qe−1 = 0 and set e = 0 if no such integer exists. Set Pe,p = {1, e, ep, ep2, . . . }.
If µ ∈ Λ let κ = coree(µ) be its e-core (see Section 3.2). Define a length function
`Λ : Λ−→N by setting

`Λ(µ) = min { i ≥ 0 | λj = κj whenever j > i and λ ∈ Λ has e-core κ } ,
where κ = (κ1, κ2, . . . ). If `Λ(µ) ≤ 1 set sΛ(µ) = 1 and otherwise define

sΛ(µ) = max { s ∈ Pe,p | µi − µi+1 ≡ −1 (mod s) for 1 ≤ i < `Λ(µ) } .
Finally, let s = sΛ(µ) and define

χΛ(µ) =
(
(µ1 − κ1)/s, (µ2 − κ2)/s, . . .

)
.

It follows from Lemma 3.15 below that χΛ(µ) is a partition.
Our main result is the following.

Main Theorem. Suppose that Λ is a cosaturated set of partitions of r and that λ, µ ∈ Λ.
Then ∆λ

k and ∆µ
k are in the same block as Sk,q(Λ)-modules if and only if the following

three conditions are satisfied:
a) λ and µ have the same e-core;
b) sΛ(λ) = sΛ(µ); and,
c) if sΛ(µ) > 1 then χΛ(λ) and χΛ(µ) have the same p-core.

Note that the 0-core of the partition χ is χ.
Let Λn,r be the set of partitions of r of length at most n, so that Λr = Λr,r. Set

Sk,q(n, r) = Sk,q(Λn,r). Then Mod-Sk,1(n, r) is the category of homogeneous polyno-
mial representations of the general linear group GLn(k) of homogeneous degree r. The
blocks of Sk,q(Λr) were classified by James and Mathas [8, Theorem 4.24]. The blocks of
Sk,q(n, r) were classified by Donkin [3, §4] (for q = 1), and Cox [1, Theorem 5.3] (for
q 6= 1). We recover all of these results as special cases of our Main Theorem.

Finally, we remark that this paper grew out of our attempts to understand the blocks of
the baby Hecke algebras Hµ = EndHk,q(r)(M(µ)), for µ a partition of r. Let Λµ be the
set of partitions of r which dominate µ. Then Λµ is cosaturated and Hµ

∼= ϕµSk,q(Λµ)ϕµ,
where ϕµ is the identity map on M(µ). Hence, there is a natural Schur functor

Fµ : Mod-Sk,q(Λµ)−→Mod-HΛ;X 7→ Xϕµ.

Our Main Theorem classifies the blocks of Sk,q(Λµ), so this gives a necessary condition for
two Hµ-modules to belong to the same block. Unfortunately, EndSk,q(Λµ)(M(µ)) can be
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larger than Hµ, so the image of a block of Sk,q(Λµ) under Fµ need not be indecomposable.
Consequently, we are not able to describe the blocks of the algebras Hµ completely.

2. JANTZEN EQUIVALENCE AND BLOCKS

This section develops a general theory for classifying blocks of quasi-hereditary (cel-
lular) algebras using Jantzen filtrations. This theory is new in the sense that it does not
appear in the literature, although everything that we do is implicit in [9] which develops
these results in the special case of the cyclotomic Schur algebras.

We remark that it has long been known to people working in algebraic groups that
Jantzen filtrations could be used to determine the blocks, however, the fact that the non-
zero coefficients in the Jantzen sum formula actually classify the blocks (Proposition 2.9)
surprised even experts in this field. For these reasons we think it is worthwhile to give a
self contained treatment of this theory of quasi-hereditary (cellular) algebras.

2.1. Cellular algebras. We start by recalling Graham and Lehrer’s definition of a cellular
algebra [5]. Fix an integral domain O.

Definition 2.1 (Graham and Lehrer [5]). A cell datum for an associative O-algebra S is
a triple (Λ, T, C) where Λ = (Λ, >) is a finite poset, T (λ) is a finite set for λ ∈ Λ, and

C :
∐
λ∈Λ

T (λ)× T (λ)−→S; (s, t) 7→ Cλst

is an injective map (of sets) such that:
a) {Cλst | λ ∈ Λ, s, t ∈ T (λ) } is an O basis of S;
b) For any x ∈ S and t ∈ T (λ) there exist scalars rtv(x) ∈ O such that, for any

s ∈ T (λ),
Cλstx ≡

∑
v∈T (λ)

rtv(x)Cλsv (mod Sλ),

where Sλ is the O–submodule of S with basis {Cµyz | µ > λ and y, z ∈ T (µ) }.
c) The O–linear map determined by ∗ : S−→ S;Cλst = Cλts, for all λ ∈ Λ and s, t ∈
T (λ), is an anti–isomorphism of S.

Then S is a cellular algebra with cellular basis {Cλst | λ ∈ Λ and s, t ∈ T (λ) }.

Suppose that (Λ, T, C) is a cell datum for an O-algebra S. Following Graham and
Lehrer [5, §2], for each λ ∈ Λ define the cell module, or standard module, ∆λ

O to be the
free O–module with basis {Cλt | t ∈ T (λ) } and with S–action given by

Cλt x =
∑

v∈T (λ)

rtv(x)Cλv ,

where rtv(x) is the scalar from Definition 2.1(b). As rtv(x) is independent of s this gives
a well–defined S–module structure on ∆λ

O. The map 〈 , 〉λ : ∆λ
O × ∆λ

O −→ O which is
determined by

(2.2) 〈Cλt , Cλu 〉λCλsv ≡ CλstCλuv (mod Sλ),

for s, t, u, v ∈ T (λ), defines a symmetric bilinear form on ∆λ
O. This form is associative in

the sense that 〈ax, b〉λ = 〈a, bx∗〉λ, for all a, b ∈ ∆λ
O and all x ∈ S.

It follows easily from the definitions that the framework above is compatible with base
change. That is, if A is a commutative O-algebra then {Cλst ⊗ 1A | λ ∈ Λ, s, t ∈ T (λ) } is
a cellular basis of the A-algebra SA = S⊗O A. Moreover, ∆λ

A
∼= ∆λ

O ⊗O A for all λ ∈ Λ.
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2.2. Jantzen filtrations of cell modules. In order to define the Jantzen filtrations of the
standard modules we now assume that O is a discrete valuation ring with maximal ideal p
and we let K be the field of fractions of O and k = O/p be the residue field of O. As
remarked in the last paragraph, SK = S⊗OK and Sk = S⊗O k are cellular algebras with,
in essence, the same cell datum. In particular, ∆λ

K
∼= ∆λ

O ⊗O K and ∆λ
k
∼= ∆λ

O ⊗O k, for
λ ∈ Λ.

Henceforth, we assume that SK is a semisimple algebra. Equivalently, by [5, Theo-
rem 3.8], we assume that the bilinear form 〈 , 〉λ for ∆λ

K is non-degenerate, for all λ ∈ Λ.
Thus, SK is semisimple if and only if ∆λ

K is irreducible for all λ ∈ Λ. Hence, (K,O, k) is
a modular system for Sk.

For λ ∈ Λ and i ≥ 0 define

Ji(∆
λ
O) = {x ∈ ∆λ

O | 〈x, y〉λ ∈ pi for all y ∈ ∆λ
O } .

Then, as the form 〈 , 〉λ is associative, ∆λ
O = J0(∆λ

O) ⊇ J1(∆λ
O) ⊇ . . . is an S-module

filtration of ∆λ
O.

Definition 2.3. Suppose that λ ∈ Λ. The Jantzen filtration of ∆λ
k is the filtration

∆λ
k = J0(∆λ

k) ⊇ J1(∆λ
k) ⊇ . . . ,

where Ji(∆λ
k) =

(
Ji(∆

λ
O) + p∆λ

O

)
/p∆λ

O for i ≥ 0.

Notice that Ji(∆λ
k) = 0 for i� 0 since ∆λ

k is finite dimensional.
For each λ ∈ Λ set Lλk = ∆λ

k/J1(∆λ
k). By the general theory of cellular algebras [5,

Theorem 3.4], Lλk is either zero or absolutely irreducible. Moreover, all of the irreducible
Sk-modules arise uniquely in this way. (Note that LλK = ∆λ

K , for λ ∈ Λ, since SK is
semisimple.)

The definition of the Jantzen filtration makes sense for the standard modules of arbi-
trary cellular algebras, however, for the next Lemma we need to assume that Sk is quasi-
hereditary. By Remark 3.10 of [5], Sk is quasi-hereditary if and only if J1(∆λ

O) 6= ∆λ
O for

all λ ∈ Λ. Equivalently, Sk is quasi-hereditary if and only if Lλk 6= 0, for all λ ∈ Λ.
A subset Γ of Λ is cosaturated if λ ∈ Γ whenever λ ∈ Λ and λ > γ for some γ ∈ Γ.

Let SΓ be the subspace of S spanned by the elements {Cλst | λ ∈ Γ and s, t ∈ T (λ) }. For
future reference we note the following fact which follows easily from Definition 2.1 and
the last paragraph.

Lemma 2.4. Suppose that Γ is a cosaturated subset of Λ. Then:
a) The algebra S/SΓ is a cellular algebra with cellular basis

{Cλst + SΓ | λ ∈ Λ\Γ and s, t ∈ T (λ) } .
b) If S is a quasi-hereditary algebra then so is S/SΓ.

Let K0(Sk) be the Grothendieck group of finite dimensional right Sk-modules. If M is
an Sk-module let [M ] be its image in K0(Sk).

If M is an Sk-module and µ ∈ Λ let [M : Lµk ] be the multiplicity of the simple module
Lµk as a composition factor of M . In particular, if λ, µ ∈ Λ let dλµ = [∆λ

k : Lµk ]. Then, by
[5, Proposition 3.6], dλλ = 1 and dλµ 6= 0 only if λ ≥ µ. Consequently, the decomposition
matrix

(
dλµ
)
λ,µ∈Λ

of Sk is a square unitriangular matrix, when its rows and columns are
ordered in a way that is compatible with >. Therefore, the decomposition matrix of Sk is
invertible over Z and as a consequence we obtain the following.

Lemma 2.5. Suppose that Sk is a quasi-hereditary cellular algebra and λ, µ ∈ Λ. Then
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a) { [∆λ
k ] | λ ∈ Λ } is a Z-basis of K0(Sk).

b) There exist integers Jλµ ∈ Z such that∑
i>0

[Ji(∆
λ
k)] =

∑
µ∈Λ
λ>µ

Jλµ[∆µ
k ].

c) If µ 6= λ then dλµ = [J1(∆λ
k) : Lµk ]. Consequently, dλµ 6= 0 if and only if J ′λµ 6= 0,

where
J ′λµ =

∑
i>0

[Ji(∆
λ
k) : Lµk ] =

∑
λ>ν≥µ

Jλνdνµ.

Moreover, if µ 6= λ then dλµ ≤ J ′λµ.

The integers Jλµ are the Jantzen coefficients of Sk. By definition,

(2.6) J ′λµ = [
⊕
i>0

Ji(∆
λ
k) : Lµk ] ≥ [rad ∆λ

k : Lµk ],

where rad ∆λ
k = J1(∆λ

k) is the radical of ∆λ
k . We show in the next section that the Jantzen

coefficients determine the blocks of Sk. They also determine the irreducible standard mod-
ules.

Corollary 2.7. Suppose that λ ∈ Λ. Then the following are equivalent:
a) ∆λ

k = Lλk is an irreducible Sk-module.
b) dλµ = δλµ, for all µ ∈ Λ (Kronecker delta).
c) Jλµ = 0, for all µ ∈ Λ.

Proof. Parts (a) and (b) are equivalent essentially by definition and (b) and (c) are equiva-
lent by Lemma 2.5(c). �

2.3. Jantzen coefficients and the blocks of Sk. The algebra Sk decomposes in a unique
way as a direct sum of indecomposable two-sided ideals Sk = B1 ⊕ · · · ⊕ Bd. If M is an
Sk-module then MBi is a Bi-module. We say that M belongs to the block Bi if MBi =
M . Using an idempotent argument (cf. [2, Theorem 56.12]) it is easy to show that two
indecomposable Sk-modules P and Q belong to the same block if and only if they are in
the same linkage class. That is, there exist indecomposable modules P1 = P, . . . , Pl = Q
such that Pi and Pi+1 have a common irreducible composition factor, for i = 1, . . . , l− 1.

Definition 2.8. Suppose that λ, µ ∈ Λ. Then λ and µ are Jantzen equivalent, and we
write λ ∼J µ, if there exist λ1 = λ, λ2, . . . , λl = µ ∈ Λ such that either

Jλiλi+1 6= 0 or Jλi+1λi 6= 0,

for 1 ≤ i < l.

The next result shows that the Jantzen equivalence classes and the blocks of Sk coincide.
This is the main result of this section.

Proposition 2.9. Suppose that λ, µ ∈ Λ. Then ∆λ
k and ∆µ

k belong to the same block as
Sk–modules if and only if λ ∼J µ.

Proof. We essentially repeat the argument of [9, Proposition 2.9]. Before we begin ob-
serve that if ν ∈ Λ then ∆ν

k is indecomposable because Lνk is the simple head of ∆ν
k.

Consequently, all of the composition factors of ∆ν
k belong to the same block.

Suppose, first, that λ ∼J µ. By definition Ji(∆λ
k) is a submodule of ∆λ

k for all i, so
all of the composition factors of

⊕
i>0 Ji(∆

λ
k) belong to the same block as ∆λ

k by the last
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paragraph. Define Λ′ to be the subset of Λ such that ν ∈ Λ′ whenever ∆ν
k and ∆λ

k are in
different blocks. Then

∑
ν∈Λ′ Jλν [∆ν

k] = 0 by (2.6). Hence, Jλν = 0 whenever ν ∈ Λ′

by Lemma 2.5(a). It follows that ∆λ
k and ∆µ

k belong to the same block whenever Jλµ 6= 0.
To prove the converse it is sufficient to show that λ ∼J µ whenever dλµ 6= 0. By

Lemma 2.5(c), if dλµ 6= 0 then J ′λµ 6= 0. Therefore, there exists a partition ν1 ∈ Λ
such that λ > ν1 ≥ µ, Jλν1

6= 0 and dν1µ 6= 0. If ν1 = µ then λ ∼J µ and we are
done. If ν1 6= µ then dν1µ 6= 0, so J ′ν1µ 6= 0 and we may repeat this argument to find
ν2 ∈ Λ with ν1 > ν2 ≥ µ, Jν1ν2 6= 0 and dν2µ 6= 0. Continuing in this way we can find
elements ν0 = λ, ν1, . . . , νl = µ in Λ such that Jνi−1νi 6= 0, dνiµ 6= 0, for 0 < i < l,
and λ > ν1 > · · · > νl = µ. Note that we must have νl = µ for some l since Λ is finite.
Therefore, λ ∼J ν1 ∼J · · · ∼J νl = µ as required. �

We have chosen to prove Proposition 2.9 using the formalism of cellular algebras, how-
ever, it can be proved entirely within the framework of quasi-hereditary algebras. Sup-
pose that O is a (complete) discrete valuation ring with residue field k. Let A be a
quasi-hereditary algebra which is free and of finite rank as an O-module and set Ak =
A ⊗O k. Following, for example, McNinch [12, §4.1] we can define Jantzen filtrations
of the standard modules of the quasi-hereditary algebra Ak. The standard modules of a
quasi-hereditary algebra are always indecomposable and they always give a basis for the
Grothendieck group of Ak. Moreover, the decomposition matrix of Ak is unitriangular.
Using these general facts, Proposition 2.9 (and Lemma 2.5 and Corollary 2.7), can be
proved for Ak following the arguments above.

3. COMBINATORICS AND JANTZEN EQUIVALENCE FOR SCHUR ALGEBRAS

We are now ready to start proving our Main Theorem. We begin by recalling the com-
binatorics we need to describe the Jantzen coefficients for the algebras Sk,q(Λ) from the
introduction. Recall from the introduction that Λr = Λr,r is the set of all partitions of r.

As in the introduction, let Λ be a cosaturated set of partitions of r and fix a field k of
characteristic p ≥ 0 and a non-zero element q ∈ k×. Let Sk,q(Λ) be the q-Schur algebra
over k with parameter q and weight poset Λ.

3.1. Schur functors. Recall that Λr is the set of all partitions of r and that Sk,q(Λr) is the
q-Schur algebra with weight poset Λr. There is a natural embedding Sk,q(Λ) ↪→ Sk,q(Λr).
Moreover, it is easy to see that if eΛ is the identity element of Sk,q(Λ) then Sk,q(Λ) =
eΛSk,q(Λr)eΛ.

For the next result, write ∆λ
k(Λr) for the standard modules of Sk,q(Λr) and ∆λ

k(Λ) for
the standard modules of Sk,q(Λ). Then, by standard arguments (see for example, [6, §6]
or [4, Proposition A3.11]), we obtain the following.

Lemma 3.1 (Schur functor). Right multiplication by eΛ induces an exact functor FΛ from
the category of right Sk,q(Λr)–modules to the category of right Sk,q(Λ)-modules such that

FΛ(∆λ
k(Λr)) ∼=

{
∆λ
k(Λ), if λ ∈ Λ,

0, if λ /∈ Λ.

Moreover, if λ ∈ Λ then dim ∆λ
k(Λ) = dim ∆λ

k(Λr).

The standard modules ∆λ
k(Λ) are often called the Weyl modules of Sk,q(Λ). In view

of Lemma 3.1 we now write ∆λ
k = ∆λ

k(Λ).
Define the quantum characteristic of (k, q) to be

e = min { c ≥ 1 | 1 + q + · · ·+ qc−1 = 0 }
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and set e = 0 if no such integer exists. That is, e = p if q = 1, e = 0 if q is not a root of
unity and otherwise e is the multiplicative order of q.

By [11, Exercise 4.14] the algebra Sk,q(Λr) is semisimple if and only if e = 0 or e > r.
Hence, applying the Schur functor of Lemma 3.1, Sk,q(Λ) is semisimple if e = 0 or e > r.
Consequently, we assume henceforth that 0 < e ≤ r.

3.2. Jantzen coefficients for Sk,q(Λ). To define the Jantzen filtrations of Sk,q(Λ) fix a
modular system with parameters (K,O, k)t,q such that

• O is a discrete valuation ring with maximal ideal p and t is an invertible element
of O;
• K is the field of fractions of O and SK,t(Λ) ∼= SO,t(Λ)⊗O K is semisimple; and,
• k ∼= O/p, q = t+ pO and Sk,q(Λ) ∼= SO,t(Λ)⊗O k.

In general, the Jantzen filtrations of Sk,q(Λ)-modules may depend upon this choice of
modular system. In this paper, however, we only need to know whether or not the Jantzen
coefficients are zero and this is independent of the choice of modular system by Proposi-
tion 3.4 below.

Least the reader be concerned that a modular system with these properties need not
always exist we note that if x is an indeterminate over k then we could let O = k[x](x) be
the localization of k[x] at the prime ideal (x), so that p = xO is the unique maximal ideal
of O. Then O is a discrete valuation ring with field of fractions K = k(x). Set t = x + q
which, by abuse of notation, we consider as an invertible element of O. Then, using the
remarks above, the reader can check that (K,O, k)t,q is a modular system with parameters
for Sk,q(Λ).

As in section 2, for each partition λ ∈ Λ define the Jantzen filtration {Ji(∆λ
k)} of the

standard module ∆λ
k of Sk,q(Λ). Define the Jantzen coefficients of Sk,q(Λ) to be the

integers JΛ
λµ determined by the following equations in K0(Sk,q(Λ)):∑

i>0

[Ji(∆
λ
k)] =

∑
µ∈Λ
µ>λ

JΛ
λµ[∆µ

k ].

Recall that Λr is the set of partitions of r. For λ, µ ∈ Λr, set Jλµ = JΛr
λµ . Applying the

Schur functor (Lemma 3.1), shows that the Jantzen coefficients depend only on Λr in the
following sense.

Corollary 3.2. Suppose that λ, µ ∈ Λ. Then JΛ
λµ = Jλµ.

Henceforth, we write JΛ
λµ = Jλµ for the Jantzen coefficients of Sk,q(Λ).

3.3. Beta numbers, abaci and cores. We now introduce the notation that we need to
describe when the Jantzen coefficients of Sk,q(Λ) are non-zero. The bulk of the work has
already been done in [8].

For any partition µ = (µ1, µ2, . . . ) let JµK = { (i, j) | 1 ≤ j ≤ µi } be the diagram
of µ which we think of as a (left justified) collection of boxes in the plane. The e-residue
of a node (i, j) ∈ JµK is the unique integer rese(i, j) such that 0 ≤ rese(i, j) < e and
rese(i, j) ≡ j − i (mod e).

Fix any integer l ≥ `(µ). For 1 ≤ i ≤ l set βi = µi − i + l. Then β1 > β2 > · · · >
βl ≥ 0 are the l-beta numbers for µ. It is well-known and easy to prove that the beta
numbers give a bijection between the set of partitions with at most l non-zero parts and the
set of strictly increasing non-negative integer sequences of length l.
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An e-abacus [7] is a Chinese abacus with e runners and with bead positions numbered
0, 1, 2, . . . from left to right and then top to bottom. (We will also need p-abaci and s-
abaci.) Let β1 > β2 > · · · > βl be the sequence of l-beta numbers for λ. The l-bead
abacus configuration for λ is the abacus with beads at positions β1, β2, . . . , and βl. Any
abacus configuration determines a set of beta numbers and hence corresponds to a unique
partition. If β ≥ 0 then bead position β + 1 is the position to the right of β and bead
position β − 1 (if β > 0) is the position to the left. (In particular, the bead position to the
left of a position on runner 0 is on runner e− 1 in the previous row.)

For example, taking e = 3 and l = 6 the abacus configurations for the partitions λ =
(4, 4, 3, 1) and κ = (4, 2) are as follows:

The e-core of λ is the partition coree(λ) whose abacus configuration is obtained from
an abacus configuration of λ by pushing all beads as high as possible on their runner. If
e = 0 then, by convention, core0(λ) = λ. If e > 0 then the e-weight of λ is the integer
(|λ| − | coree(λ)|)/e otherwise λ has e-weight zero. For example, if λ = (4, 4, 3, 1), as in
the example above, then coree(λ) = (4, 2) = κ and λ has 3-weight 2.

Observe that, up to a constant shift, {λi − i | 1 ≤ i ≤ l } is the set of beta numbers
of λ. Therefore, two partitions λ and µ of r have the same e-core if and only if

λi − i ≡ µiw − iw (mod e),

for some w ∈ Sr.
Let λ′ = (λ′1, λ

′
2, . . . ) be the partition conjugate to λ, so that λ′j = # { i ≥ 1 | λi ≥ j }

for j ≥ 1. If (a, b) ∈ JλK then the (a, b)-rim hook of λ is the set of nodes

Rλab = { (i, j) ∈ JλK | a ≤ i ≤ λ′b, b ≤ j ≤ λa such that (i+ 1, j + 1) /∈ JλK } .

The node (a, λa) is the hand node of Rλab, f
λ
ab = (λ′b, b) is the foot node and hλab = |Rλab|

is the hook length of Rλab. The foot residue of Rλab is b− λ′b (mod e), the residue of fλab.
The hook Rλab is an h-hook if h = hλab. Thus, Rλab is the h-hook consisting of the set of
nodes along the ‘rim’ of JλK which connects the hand and foot nodes.

If µ is a partition and JµK = JλK \ Rλab, for some (a, b) ∈ JλK, then we say that µ
is obtained from λ by unwrapping the rim hook Rλab and that λ is obtained from µ by
wrapping on this hook. A hookRλab is removable if JλK\Rλab is the diagram of a partition.

Using the definitions, if {β1, . . . , βl} is a set of beta numbers for λ and if µ is obtained
from λ by unwrapping the rim hook Rλab then {β1, . . . , βa−1, βa − hλab, βa+1, . . . , βl} is a
set of beta numbers for µ. With a little extra care we obtain the following well-known fact;
see, for example, [11, Lemma 5.26].

Lemma 3.3. Suppose that λ is a partition. Then moving a bead h positions to the right
in the abacus configuration of λ from runner f to runner f ′ corresponds to wrapping an
h–rim hook with foot residue f onto λ. Equivalently, moving a bead h positions to the left,
from runner f ′ to runner f corresponds to unwrapping an h–rim hook from λ with foot
residue f .

The following Lemma shows that the non-vanishing of the Jantzen coefficients is in-
dependent of the choice of modular system. First, however, we need a definition. Let
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νe,p :N \ {0}−→N be the map which sends h > 0 to

νe,p(h) =

{
νp(

h
e ) + 1, if e | h,

0, if e - h,

where νp is the usual p-adic valuation map on N \ {0} (and where we set νp(h) = 0 for all
h ∈ N \ {0} if p = 0). Note that νp,p(h) = νp(h), for all h ∈ N \ {0}.

For each integer k ∈ Z, define the t-quantum integer [k] = (tk−1)/(t−1) ∈ N[t, t−1].
The next result is a sharpening of results from [8]. The main point is to show that the

Jantzen coefficients depend only on e and p.

Proposition 3.4. Suppose that λ, µ ∈ Λ. Then Jλµ 6= 0 if only if λ . µ and there exist
nodes (a, b), (a, c) ∈ JλK such that b < c and νe,p(hλab) 6= νe,p(h

λ
ac) and µ is obtained

from λ by unwrapping the rim hook Rλac and then wrapping it back on with its hand node
in column b.

Proof. Let νp be the p-adic valuation map on O. Then, by [8, Theorem 4.3],

Jλµ =
∑

(a,b),(a,c)∈JλK

±
(
νp([hλab])− νp([hλac])

)
,

where the sum is over a collection of nodes (a, b), (a, c) ∈ JλK which satisfy the assump-
tions of the Lemma. Using the abacus and Lemma 3.3, it is easy to see that there is at most
one pair of nodes (a, b), (a, c) ∈ JλK that allow us to obtain µ from λ by unwrapping and
then wrapping on a hook, so the last equation becomes

Jλµ = ±
(
νp([hλab])− νp([hλac])

)
.

(The sign is determined by the parity of the sum of the leg lengths of the rim hooks in-
volved.) By [8, Lemma 4.17], if a and b are any integers then νp([a]) = νp([b]) if and
only if either (a) e - a and e - b, or (b) e | a, e | b and νp(a) = νp(b). Putting these two
statements together proves the lemma. �

Surprisingly, the next result appears to be new.

Corollary 3.5. Suppose that λ, µ ∈ Λ. Then Jλµ 6= 0 if and only if λ . µ and there exist
nodes (x, z), (y, z) ∈ JµK such that x < y and νe,p(hµxz) 6= νe,p(h

µ
yz) and λ is obtained

from µ by unwrapping the rim hook Rµyz and then wrapping it back on with its foot node
in row x.

Proof. Fix nodes (a, b), (a, c) ∈ JλK as in Proposition 3.4 such that b < c and µ is obtained
from λ by unwrapping Rλac and wrapping it back on with its hand node in column b. Let
(y, z) ∈ JµK be the unique node such that JµK\Rµyz = JλK\Rλac, as in the diagram below.
Thus, y = λ′b+1 andRµyz is the rim hook which is wrapped back on to JλK\Rλac to form µ.

a

b c

x

y

z

Rλac

Rµyz

λ

Set x = λ′c. Then x < y and Rµxz t Rλac = Rλab t Rµyz (disjoint unions), where these sets
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are disjoint because b < c. Therefore, hµxz = hλab, since hµyz = hλac, and λ is obtained by
unwrapping Rµyz from µ and then wrapping it back on with its foot node in row x. The
result now follows by Proposition 3.4. �

Hence, the coefficients Jλµ are almost symmetric in λ and µ.

Corollary 3.6. Suppose that λ, λ′, µ, µ′ ∈ Λr. Then Jλµ 6= 0 if and only if Jµ′λ′ 6= 0.

Proof. This is immediate because the conditions in Proposition 3.4 and Corollary 3.5 are
interchanged by taking conjugates of partitions. �

It is well-known from [8] that the blocks of Sk,q(n, n) are determined by the e-cores
of the partitions. The next lemma establishes the easy half of this classification within our
framework.

Lemma 3.7. Suppose that λ, µ ∈ Λ and that Jλµ 6= 0. Then λ . µ and λ and µ have the
same e-core.

Proof. By Proposition 3.4 since Jλµ 6= 0 there exist nodes (a, b), (a, c) ∈ JλK such that
b < c, νe,p(hλab) 6= νe,p(h

λ
ac) and µ is obtained from λ by unwrapping the rim hook Rλac

and then wrapping it back on with its hand node in column b. As the rim hook Rλac is
wrapped back onto λ lower down it follows λ.µ. It remains to show that λ and µ have the
same e-core.

By Lemma 3.3, the abacus configuration for µ is obtained from the abacus configuration
for λ by moving one bead hλac positions to the left and another bead hλac positions to the
right.

If e | hλac then, by Lemma 3.3, the e-abacus configuration for µ is obtained by moving
two beads on the same runner in the e-abacus configuration for µ. Hence, λ and µ have the
same e-core.

On the other hand, if e - hλac then νe,p(hλac) = 0, so that e divides hλab by Proposi-
tion 3.4. Therefore, the foot residues of the hooks being unwrapped and then wrapped
back into λ\Rλac coincide (since, modulo e, these residues differ by hλab). Hence, applying
Lemma 3.3, the abacus configuration for µ is obtained from the abacus for λ by moving
a bead hλab positions to the left to runner f , say, and then moving another bead hλac po-
sitions to the right from runner f . Consequently, the number of beads of each runner is
unchanged, so that λ and µ have the same e-core. �

One consequence of Lemma 3.7 is that we can weaken the definition of a cosaturated
set of partitions.

Definition 3.8. Suppose that Λ is a set of partitions of r. Then Λ is e-cosaturated if µ ∈ Λ
whenever there exists a partition λ ∈ Λ such that µ D λ and λ and µ have the same e-core.

Suppose that Λ is a cosaturated set of partitions and that κ is an e-core. Let Λκ be the
set of partitions in Λ which have e-core κ. Then Λκ is e-cosaturated. For each λ ∈ Λ let
ϕλ be the identity map on M(λ) and set

e(r)
κ =

∑
λ∈Λκ

ϕλ.

Then e(r)
κ is an idempotent in Sk,q(Λ). Hence, Lemma 3.7 and standard Schur functor

arguments, as in Lemma 3.1, imply that the algebra

(3.9) Sk,q(Λκ) := e(r)
κ Sk,q(Λ)e(r)

κ ,
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is a quasi-hereditary algebra with weight poset Λκ. The algebra Sk,q(Λκ) is a direct sum of
blocks of Sk,q(Λ). In general, however, Sk,q(Λκ) is not indecomposable. In what follows
it will sometimes be convenient to assume that Λ = Λκ is e-cosaturated.

3.4. Projective Sk,q(Λ)-modules. Up until now we have been recalling and slightly im-
proving on results from the literature, but we now leave this well-trodden path. The main
result of this section is Proposition 3.14 which is a very subtle characterisation of the par-
titions which contain only horizontal e-hooks. This result is the key to the main results
of this paper. In particular, it motivates the combinatorial definitions which underpin our
Main Theorem.

Let Pµk be the projective cover of Lµk . In Corollary 2.7 we used the Jantzen coefficients
to classify the simple standard modules of a quasi-hereditary algebra. The next result,
which is routine but puts the results below into context, shows that the Jantzen coefficients
also classify the projective standard modules of Sk,q(Λ).

Lemma 3.10. Suppose that µ ∈ Λ. Then the following are equivalent:

a) ∆µ
k = Pµk is a projective Sk,q(Λ)-module.

b) ∆µ
k is a projective Sk,q(Λr)-module.

c) dλµ = δλµ, for all λ ∈ Λ.
d) Jλµ = 0, for all λ ∈ Λ.
e) νe,p(hµac) = νe,p(h

µ
bc), for all nodes (a, c), (b, c) ∈ JµK.

f) ∆µ′

k = Lµ
′

k is an irreducible Sk,q(Λr)-module.

Proof. Parts (a), (c) and (d) are equivalent exactly as in Corollary 2.7. Let Pµk be the
projective cover of Lµk .

For part (c), it follows from the general theory of cellular algebras [5, §3] that Pµk has a
∆-filtration in which ∆λ

k appears with multiplicity dλµ. (Note that if dλµ 6= 0 then λ D µ
so that λ ∈ Λ since Λ is cosaturated.) Consequently, Pµk is also the projective cover of
∆µ
k , so that ∆µ

k is projective if and only if dλµ = δλµ. Hence, parts (b) and (c) are also
equivalent.

Finally, note that Jλµ 6= 0 if and only if Jµ′λ′ 6= 0 by Corollary 3.6, so that (d) and (f)
are equivalent by Corollary 2.7 and (d) and (e) are equivalent by Proposition 3.4. This
completes the proof. �

Parts (a)–(d) of Lemma 3.10 are equivalent for any quasi-hereditary cellular algebra.

3.11. Example Suppose that (e, p) = (3, 0) and let Λ be the set of partitions of 39 which
dominate (29, 6, 4) and which do not have empty 3-core. Then Λ is 3-cosaturated and
contains the 10 partitions listed below. The reader may check that each of these partitions
satisfies the equivalent conditions of Lemma 3.10. Consequently, the decomposition matrix
of SC,ω(Λ), where ω = exp(2πi/3), is the identity matrix and SC,ω(Λ) is semisimple. In
contrast, if (e, p) = (3, 2) then, using [10] together with the Steinberg tensor product
theorem via [1, Proposition 5.4] (see section 3.5), the decomposition matrix of Sk,q(Λ) is
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the following.

(34, 5) 1
(31, 5, 3) . 1
(31, 8) . 1 1
(37, 2) . 1 . 1
(30, 7, 2) . . . . 1
(33, 4, 2) . . . . . 1
(29, 6, 4) . . . . . . 1
(29, 9, 1) . . . . . . 1 1
(32, 6, 1) . . . . . . 1 1 1
(35, 3, 1) . . . . . . . . 1 1

Therefore, when p = 2 the partitions in Λ which satisfy the equivalent conditions of
Lemma 3.10 are (34, 5), (31, 8), (37, 2), (30, 7, 2), (33, 4, 2) and (35, 3, 1). 3

The hook Rλab is horizontal if it is entirely contained in row a of λ. Thus, Rλab is
horizontal if and only if λ′b = a.

Definition 3.12. Suppose that λ ∈ Λ. Then λ only contains horizontal hooks if λ is either
an e-core or every removable e-hook of λ is horizontal and unwrapping any of these hooks
gives a partition which only contains horizontal e-hooks.

3.13. Example Suppose that e = 3 and µ = (7, 4). Then µ does not contain only hor-
izontal e-hooks because, even though all of the removable 3-hooks of µ are horizontal,
R

(7,4)
15 , R(42)

13 , R(3,2)
12 is a sequence of e-hooks leading to its 3-core (12), however, only the

first of these hooks is horizontal. 3

We now come to the main result of this section, which is both tricky to prove and pivotal
for our Main Theorem. In particular, Proposition 3.14 shows that all of the partitions in
Example 3.11 contain only horizontal 3-hooks.

Proposition 3.14. Suppose that µ ∈ Λ and let κ be the e-core of µ. Then the following are
equivalent:

a) If (a, c), (b, c) ∈ JµK then e divides hµac if and only if e divides hµbc.
b) The partition µ only contains horizontal e-hooks.
c) µi − µi+1 ≡ −1 (mod e), whenever i ≥ 1 and µi+1 > κi+1.

Moreover, these three combinatorial conditions are all equivalent to ∆µ
k = Pµk being

projective as an Sk,q(Λ)-module when p = 0.

Proof. By Lemma 3.10, part (a) is equivalent to ∆µ
k being projective when p = 0, so it is

enough to show that (a)–(c) are equivalent. Before we start, recall that a partition ν is an
e-core if and only if e does not divide hνab, for all (a, b) ∈ JνK. This is easily proved using
Lemma 3.3.

Let w be the e-weight of µ. If w = 0 then µ is an e-core and (a)–(c) are equivalent
because all three statements are vacuous by the remarks in the first paragraph. We now
assume thatw > 0 and argue by induction onw. Suppose that (a) holds and fix (a, c) ∈ JµK
where a is maximal such that e divides hµac. By part (a), and the maximality of a, the
node (a, c) must be at the bottom of its column. Hence, Rµac is a horizontal hook and, by
changing c if necessary, we may assume that hµac = e. Let ν be the partition obtained
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from µ by unwrapping Rµac. Since Rµac is horizontal, and hµac = e,

hνxy =


hµxy − 1, if c ≤ y < c+ e and x < a,

hµxy − e, if y < c and x ≤ a,
hµxy, otherwise.

Therefore, ν satisfies the condition in part (a) of the Proposition. Hence, by induction
on w, ν also satisfies condition (b) so that every removable e-hook contained in ν is hori-
zontal. Now suppose thatRµxy is any removable fe-hook in µ, for f ≥ 1. IfRµxy∩Rµac = ∅
then Rµxy ⊆ [ν] so that it is a union of horizontal e-hooks by induction. If Rµxy ∩ Rµac is
non-empty then, y /∈ (c, c + e) by (a) since hµxy = fe. Therefore, Rµac ⊆ Rµxy , so that
Rµxy\Rµac is a union of horizontal e-hooks in ν. Continuing in this way shows that every
e-hook contained in µ is either equal to Rµac or it is an e-hook contained in ν. Therefore,
by induction, all of the e-hooks contained in µ are horizontal so that (b) holds.

Now suppose that (b) holds. By way of contradiction, suppose that µi − µi+1 6≡
−1 (mod e), for some i with µi+1 > κi+1. Without loss of generality, we may assume
that i is maximal with this property. Let c be the unique integer such that 0 < c < e and
e − c − 1 ≡ µi − µi+1. Since i was chosen to be maximal, (i + 1, c′) is at the bottom of
its column, where c′ = µi+1 − c + 1, so that Rµic′ is a removable fe-hook which is not
horizontal, for some f ≥ 1. It follows that µ contains a non-horizontal e-hook, which is a
contradiction. Hence, µi − µi+1 ≡ −1 (mod e) whenever µi+1 > κi+1 and (c) holds.

Finally, suppose that (c) holds. Suppose that i is maximal such that µi+1 > κi+1. Now
because µi − µi+1 ≡ −1 (mod e), row i + 1 of µ contains (µi+1 − κi+1)/e horizontal
e-hooks and, moreover, µi > κi. Hence, removing these horizontal e-hooks and arguing
by induction it follows that µj − µj+1 ≡ −1 (mod e), for 1 ≤ j ≤ i.

Now let (a, c) and (b, c) be two nodes in JµK with a < b. If (b, c) ∈ [κ] then (a, c) ∈ [κ]
so that e does not divide hµac and e does not divide hµbc. If (b, c) /∈ [κ] then µb > κb and,
by the last paragraph, µa > κa since a < b. Let µ′ = (µ′1, µ

′
2, . . . ) be the partition which

is conjugate to µ. Then,

hµac − h
µ
bc = (µa − a+ µ′c − c+ 1)− (µb − b+ µ′c − c+ 1)

= µa − µb + b− a ≡ 0 (mod e),

where the last congruence follows because µj − µj+1 ≡ −1 (mod e), for 1 ≤ j ≤ i.
Hence, (a) holds and the proof is complete. �

3.5. The combinatorics of our Main Theorem. Using Proposition 3.14 we can now
properly define the combinatorics underpinning our Main Theorem. The main result of
this section is Proposition 3.21 which gives a combinatorial reduction of the calculation of
the Jantzen coefficients to the case when sΛ(µ) = 1.

Recall from the introduction that Pe,p = {1, e, ep, ep2, . . . }. Suppose that µ ∈ Λ has
e-core κ = (κ1, κ2, . . . ). Let Λκ be the set of partitions in Λ which have e-core κ and
define the length function `Λ : Λ−→N by

`Λ(µ) = min { i ≥ 0 | λj = κj whenever j > i and λ ∈ Λκ } .
(By definition a partition is an infinite non-increasing sequence µ = (µ1, µ2, . . . ) so this
makes sense.) Observe that if Λ ⊆ Λr then `Λ(µ) < r, for all µ ∈ Λ. Moreover, `Λ(µ) = 0
if and only if µ = κ is an e-core and `Λ(µ) = 1 only if Λκ = {µ}.

The reason why the length function `Λ is important is that if κ is an e-core and if µ is
any partition in Λκ then µi = κi, whenever i > `Λ(µ). In particular, when applying the
sum formula we can never move e-hooks below row `Λ(µ).
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Following the introduction, if µ ∈ Λ and `Λ(µ) ≤ 1 set sΛ(µ) = 1 and otherwise define

sΛ(µ) = max { s ∈ Pe,p | µi − µi+1 ≡ −1 (mod s), 1 ≤ i < `Λ(µ) } .

This definition is stronger than it appears.

Lemma 3.15. Suppose that µ ∈ Λ and that s′ ∈ Pe,p with 0 < s′ ≤ sΛ(µ). Then

µi − µi+1 ≡ −1 (mod s′),

for 1 ≤ i < `Λ(µ). Moreover, every removable s′-hook contained in µ is horizontal and
if (a, c), (b, c) ∈ JµK then s′ divides hµac if and only if s′ divides hµbc.

Proof. If 0 6= s′ ∈ Pe,p and sΛ(µ) ≥ s′ then µi − µi+1 ≡ −1 (mod s′) since s′ divides s.
Applying Proposition 3.14 with e = s′ shows that every removable s′-hook contained in µ
is horizontal and that s′ divides hµac if and only if s′ divides hµbc, for (a, c), (b, c) ∈ JµK. �

Armed with Lemma 3.15 we can now give a more transparent definition of the partition
χΛ(µ) = (χ1, χ2, . . . ) from the introduction. That is, let χi be the number of horizontal
s-hooks in row i of µ, where s = sΛ(µ) and 1 ≤ i ≤ `Λ(µ). Hence, if κ(s) is the s-core
of µ then

µi ≡ κ(s)
i (mod s), for 1 ≤ i ≤ `Λ(µ).

Therefore, since µ is a partition which contains only horizontal s-hooks, the number of
s-hooks in row i of µ is greater than that number of s-hooks in row i+ 1. Hence, χΛ(µ) is
a partition.

We illustrate all of the definitions in this section in Example 3.17 below.
By definition, if λ and µ are two partitions in Λ which have the same e-core then

`Λ(λ) = `Λ(µ). This observation accounts for the dependence of the integer sΛ(µ) and
the partition χΛ(µ) upon the poset Λ.

Definition 3.16. Define ∼Λ to be the equivalence relation on Λ such that λ ∼Λ µ, for
λ, µ ∈ Λ, if

a) λ and µ have the same e-core;
b) sΛ(λ) = sΛ(µ); and,
c) if sΛ(µ) > 1 then χΛ(λ) and χλ(µ) have the same p-core.

For part (c), recall that if p = 0 then the 0-core of the partition ν is ν.
Thus, our Main Theorem says that if λ, µ ∈ Λ then ∆λ

k and ∆µ
k are in the same block if

and only if λ ∼Λ µ. We prove this in the next section. First, however, we give an example
and begin to investigate the combinatorics of the equivalence relation ∼Λ.

3.17. Example Suppose that (e, p) = (3, 2) and let Λ be the set of partitions of 39 which
dominate (29, 6, 4) and which do not have empty 3-core. Then Λ is 3-cosaturated and it
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contains the 10 partitions in the table below which describes the equivalence ∼Λ.

µ core3(µ) `Λ(µ) sΛ(µ) χΛ(µ) core2(χΛ(µ))

(35, 3, 1) (5, 3, 1) 3 3 (10) (0)
(32, 6, 1) (5, 3, 1) 3 3 (9, 1) (0)
(29, 9, 1) (5, 3, 1) 3 3 (8, 2) (0)
(29, 6, 4) (5, 3, 1) 3 3 (8, 1, 1) (0)

(33, 4, 2) (6, 4, 2) 2 6 (4) (0)

(30, 7, 2) (6, 4, 2) 2 24 (0) (0)

(37, 2) (4, 2) 3 3 (11) (1)
(31, 8) (4, 2) 3 3 (9, 2) (1)
(31, 5, 3) (4, 2) 3 3 (9, 1, 1) (1)

(34, 5) (4, 2) 3 6 (4) (0)

The different regions in the table give the ∼Λ equivalence classes in Λ. By our Main
Theorem these regions label the blocks of Sk,q(Λ). The reader can check that this agrees
with Example 3.11 which gives the decomposition matrix for Sk,q(Λ). This example shows
that `Λ need not be constant on Λ.

Continuing Example 3.11, if (e, p) = (3, 0) then `Λ(µ) is as given above but sΛ(µ) = 3
for all µ ∈ Λ. Therefore, by our Main Theorem, all of these partitions are in different
blocks because the partitions core0

(
χΛ(µ)

)
= χΛ(µ) are distinct, for µ ∈ Λ. Once again,

this agrees with the block decomposition of Sk,q(Λ) given in Example 3.11 when (e, p) =
(3, 0). 3

The following results establish properties of the equivalence relation ∼Λ that we need
to prove our Main Theorem.

Lemma 3.18. Suppose that µ ∈ Λ and s ∈ Pe,p. Then sΛ(µ) ≥ s if and only if the last
`Λ(µ) beads on an s-abacus configuration for µ are all on the same runner.

Proof. Observe that µi − µi+1 ≡ −1 (mod s), for 1 ≤ i < `, if and only if

µi+1 − (i+ 1) ≡ µi − i (mod s),

whenever 1 ≤ i < `. For any positive integer m the m-beta numbers for µ are m+µj − j,
for 1 ≤ j ≤ m. Hence, using Lemma 3.15, it follows that sΛ(µ) ≥ s if and only if the
last ` beads on any abacus configuration for µwith s runners all lie on the same runner. �

Lemma 3.19. Suppose that µ ∈ Λ and that (a, b) ∈ [χ] is a node in χ = χΛ(µ) and let
s = sΛ(µ). Then hχab = 1

sh
µ
aB , where column B of µ is the bth column of µ with hook

lengths divisible by s, reading from left to right.

Proof. By Proposition 3.14 and the definition of s = sΛ(µ), all of the removable s-hooks
in µ are horizontal so the definition of B makes sense. The Lemma follows from the
observation that the nodes in χ correspond to the removable s-hooks in µ and that the
nodes in the rim rook Rχab correspond to the removable s–hooks which make up the rim
hook RµaB in µ. �

Lemma 3.20. Suppose that λ and µ have the same e-core and that sΛ(λ) = sΛ(µ), for
partitions λ, µ ∈ Λ. Then λ D µ if and only if χΛ(λ) D χΛ(µ).
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Proof. By Proposition 3.14 the partitions λ and µ only contain horizontal s-hooks, where
s = sΛ(µ). The Lemma follows using this observation and the correspondence between
the nodes in χΛ(λ) and χΛ(µ) and the horizontal s-hooks in λ and µ, respectively. �

The following result is a key reduction step for understanding the blocks of Sk,q(Λ).
Proposition 3.21 can be interpreted as saying that the Steinberg tensor product theorem pre-
serves Jantzen equivalence — note, however, that its proof requires no knowledge of Stein-
berg. This result will allow us to reduce Jantzen equivalence to the case where sΛ(µ) = 1.
Recall that Sk,1(Λ) is the Schur algebra with parameter q = 1.

Proposition 3.21. Suppose that λ, µ ∈ Λκ, where κ is an e-core, are partitions with
s = sΛ(λ) = sΛ(µ) > 1. Let Γ = {χΛ(ν) | ν ∈ Λκ and sΛ(ν) = s } . Then Γ is an
cosaturated set of partitions and

JΛ
λµ 6= 0 if and only if JΓ

χΛ(λ)χΛ(µ) 6= 0,

where JΓ
χΛ(λ)χΛ(µ) is a Jantzen coefficient for the algebra Sk,1(Γ). Moreover, if p = 0 then

JΛ
λµ = 0.

Proof. By Lemma 3.20, Γ is an e-cosaturated set of partitions. In order to compare the
Jantzen coefficients of the algebras Sk,q(Λ) and Sk,1(Γ) write s = epd, for some d ≥ 0
(with d = 0 if p = 0). By Lemma 3.15, if (x, z) ∈ JµK then νe,p(hµxz) 6= 0 only if s divides
hµxz . Moreover, using the notation of Lemma 3.19, if s divides hµaB , for (a,B) ∈ JµK, then

νe,p(h
µ
aB) = νe,p(sh

χΛ(µ)
ab ) = νe,p(ep

dh
χΛ(µ)
ab ) =

{
d+ νp,p(h

χΛ(µ)
ab ), if p > 0,

1 if p = 0.

Hence, JΛ
λµ 6= 0 if and only if JΓ

χΛ(λ)χΛ(µ) 6= 0 by Corollary 3.5. Finally, if p = 0 then
JΛ
λµ = 0 by Corollary 3.5 because, by what we have shown, if sΛ(µ) > 1 then νe,0(hµxy)

is constant on the columns of µ. �

3.6. The Main Theorem. We are now ready to prove our main theorem. We start by
settling the case when sΛ(µ) = 1.

Recall from after Definition 3.8 that if κ is an e-core then Λκ is the set of partitions in
Λ with e-core κ. By (3.9) the algebra Sk,q(Λκ) is a direct summand of Sk,q(Λ).

Lemma 3.22. Suppose that sΛ(τ) = 1, where τ ∈ Λ has e-core κ. Then

{µ ∈ Λ | µ ∼Λ τ } = Λκ = {µ ∈ Λ | µ ∼J τ } .
In particular, µ ∼Λ τ if and only if µ ∼J τ .

Proof. By definition, if µ ∈ Λ then µ ∼Λ τ if and only if µ ∈ Λκ and sΛ(µ) = 1. Suppose,
by way of contradiction, that sΛ(µ) > 1 for some µ ∈ Λκ. Taking s′ = e in Lemma 3.15,
it follows that

−1 ≡ µi − µi+1 (mod e), for 1 ≤ i < `Λ(µ).

Combining parts (b) and (c) of Proposition 3.14, this last equation is equivalent to

−1 ≡ κi − κi+1 (mod e), for 1 ≤ i < `Λ(µ).

By the same argument, since `Λ(τ) = `Λ(µ), this implies that

−1 ≡ τi − τi+1 (mod e), for 1 ≤ i < `Λ(τ).

This implies that sΛ(τ) ≥ e, a contradiction! Therefore, sΛ(µ) = 1, for all µ ∈ Λκ.
Hence, Λκ = {µ ∈ Λ | µ ∼Λ τ }, giving the left hand equality of the Lemma.
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We now show that µ ∼J τ if and only if µ ∈ Λκ. If µ ∼J τ then µ ∈ Λκ by Lemma 3.7.
To prove the converse, let γ be the unique partition with e-core κ which has (|τ | − |κ|)/e
horizontal e-hooks in its first row. Then γ D µ for all µ ∈ Λκ. To complete the proof it
is enough to show that µ ∼J γ, whenever µ ∈ Λκ. If µ = γ there is nothing to prove,
so suppose that µ 6= γ. If Jλµ 6= 0 for some λ ∈ Λ then λ . µ by Lemma 3.7 so that
µ ∼J λ ∼J γ by induction on dominance.

We have now reduced to the case when Jλµ = 0 for all λ ∈ Λ. Consequently,
νe,p(h

µ
ac) = νe,p(h

µ
bc), for all (a, c), (b, c) ∈ JµK by Lemma 3.10(e). Hence, µ con-

tains only horizontal e-hooks by Proposition 3.14. On the other hand, since sΛ(µ) = 1
by the last paragraph, there exists an integer i such that µi − µi+1 6≡ −1 (mod e) and
1 ≤ i < `Λ(µ). Fix i which is minimal with this property and notice that we must have
µi+1 = κi+1 by Proposition 3.14(c). Recalling that all of the e-hooks in µ are horizontal,
let λ be the partition obtained by unwrapping the lowest removable e-hook from µ and
then wrapping it back on with its foot node in row i + 1. Then λ is a partition because i
is minimal such that µi − µi+1 6≡ −1 (mod e). Moreover, since Λ is cosaturated, λ ∈ Λκ
because `Λ(µ) > i, µi+1 = κi+1 and all of the e-hooks in µ are horizontal. Next observe
that Jµλ 6= 0 by Proposition 3.4 because the valuations of the corresponding hook lengths
are different since all of the e-hooks in µ are horizontal. Now let σ be the partition obtained
by unwrapping this same hook from λ and wrapping it back on as a horizontal hook in the
first row. By construction all of the e-hooks in σ are horizontal so, as before, Jσλ 6= 0 by
Corollary 3.5 (note, however, that Jσµ = 0). Hence, µ ∼J λ ∼J σ ∼J γ, with the last
equivalence following by induction since σ . µ. This completes the proof. �

Lemma 3.23. Suppose that λ ∼J µ, for λ, µ ∈ Λ. Then sΛ(λ) = sΛ(µ).

Proof. Let s = sΛ(µ) and let ` = `Λ(µ). By Lemma 3.22 we may assume that s > 1 and
hence that p > 0 since sΛ(µ) ∈ {1, e} if p = 0. It is enough to show that sΛ(λ) = s when-
ever Jλµ 6= 0. By Corollary 3.5, Jλµ 6= 0 if and only if there exist nodes (x, z), (y, z) ∈
JµK such that x < y ≤ `, νe,p(hµxz) 6= νe,p(h

µ
yz) and λ is obtained from µ by unwrap-

ping Rµyz and wrapping it back on with its foot node in row x. Therefore, s divides both
of hµxz and hµyz and λ is obtained from µ by moving a union of s-hooks.

By Lemma 3.18 the last ` beads are always on the same runner in any s-abacus. There-
fore, by the last paragraph, an s-abacus for λ is obtained from the s-abacus configuration
for µ by moving two beads on the same runner. That is, the abacus configuration for λ
is obtained from an s-abacus for µ by moving one bead up fs positions and another bead
down fs-positions, for some f ≥ 1. Hence, sΛ(λ) ≥ sΛ(µ) = s by Lemma 3.18 (since
`Λ(λ) = ` by Lemma 3.7).

By symmetry, using Proposition 3.4 instead of Corollary 3.5, sΛ(µ) ≥ sΛ(λ). Hence,
sΛ(µ) = sΛ(λ) as required. �

We can now prove our Main Theorem.

Proof of the Main Theorem. By Proposition 2.9 we need to prove that λ ∼J µ if and only
if λ ∼Λ µ, for λ, µ ∈ Λ. If p = 0 then the result follows from Proposition 3.21 and
Lemma 3.22, so assume that p > 0.

First suppose that λ ∼Λ µ, for λ, µ ∈ Λ. To show that λ ∼J µ we argue by induction
on s = sΛ(µ). If s = 1 the result is just Lemma 3.22, so suppose that s > 1. As
in Proposition 3.21 let Γ = {χΛ(ν) | ν ∈ Λκ and sΛ(ν) = s }, an e-cosaturated set of
partitions. By definition, sΓ(χΛ(λ)) = 1 = sΓ(χΛ(µ)) and, since λ ∼Λ µ, the partitions
χΛ(λ) and χΛ(µ) have the same p-core. Therefore, χΛ(λ) ∼JΓ χΛ(µ) by Lemma 3.22.
Hence, by Proposition 3.21, λ ∼J µ as required.
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To prove the converse it is enough to show that λ ∼Λ µ whenever Jλµ 6= 0. By
Lemma 3.7, λ and µ have the same e-core. Moreover, sΛ(λ) = sΛ(µ), by Lemma 3.23.
Finally, χΛ(λ) ∼JΓ χΛ(µ) are Jantzen equivalent for Sk,1(Γ) by Proposition 3.21 since
λ ∼J µ. Consequently, χΛ(λ) and χΛ(µ) have the same p-core by Lemma 3.7. Hence,
λ ∼Λ µ as we wanted to show. �
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