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ABSTRACT. Following a question of Vinberg, a general method to construct monomial
bases in finite-dimensional irreducible representations of a reductive Lie algebra g was de-
veloped in a series of papers by Feigin, Fourier, and Littelmann. Relying on this method,
we construct monomial bases of multiplicity spaces associated with the restriction of the
representation to a reductive subalgebra g0 ⊂ g. As an application, we produce monomial
bases for representations of the general linear and symplectic Lie algebras associated with
natural chains of subalgebras. We also show that our basis in type A is related to both the
Gelfand–Tsetlin basis and the Littelmann basis via triangular transition matrices which im-
plies that the triangularity property extends to the matrix connecting the Gelfand–Tsetlin
and canonical bases. A similar relationship holds between our basis in type C and a suit-
ably modified version of the basis constructed earlier by the first author.

INTRODUCTION

A general method to construct monomial bases in finite-dimensional irreducible rep-
resentations of a reductive Lie algebra g has been developed in a series of papers by
E. Feigin, G. Fourier, and P. Littelmann [5, 6, 7] following a question and initial examples
of E. Vinberg. In accordance with this method, one chooses a triangular decomposition
g = n− ⊕ h⊕ n+ and a basis {f1, . . . , fN} of the nilpotent Lie algebra n− consisting of root
vectors. Let V (λ) be a finite-dimensional irreducible g-module and let ξ ∈ V (λ) be a high-
est weight vector. By introducing special orderings on monomials in the basis elements
fi it is possible to specify conditions on the powers αi so that the vectors

fα1
1 . . . fαN

N ξ

form a basis of V (λ). Such conditions are given in an explicit form for types A and C in
[5] and [6], respectively. A unified approach is presented in [7].

One of the features of the initial solutions [5, 6] is that a homogeneous order on the mono-
mials was used, which means that the degrees are compared first. In such a setup, the
sequence of factors is not significant. By now there is a tremendous development in the
area, with both geometric and combinatorial applications, and numerous variations have
been studied, see e.g. [3, 4] and references therein. Of particular interesest and impor-
tance are connections with the Littelmann bases [11] and with the PBW-type versions of
the canonical basis of Lusztig [12, 13], see [4, Sec. 11&12].
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Our goal in this paper is to adjust the FFLV method to construct bases of the multiplicity
spaces associated with the restriction of V (λ) to a reductive subalgebra g0. Given a finite-
dimensional irreducible g0-module V ′(µ), the corresponding multiplicity space is defined
by

U(λ, µ) = Homg0

(
V ′(µ), V (λ)

)
.

Note thatU(λ, µ) is isomorphic to the subspace V (λ)+
µ of g0-highest weight vectors in V (λ)

of weight µ and we have a vector space decomposition

(0·1) V (λ) ∼= ⊕
µ
V (λ)+

µ ⊗ V ′(µ).

Hence, if some bases of the spaces V (λ)+
µ and V ′(µ) are produced, then the decomposition

(0·1) yields the natural tensor product basis of V (λ). The celebrated Gelfand–Tsetlin bases
[8, 9] for representations of the general linear and orthogonal Lie algebras are obtained
by iterating this procedure and applying it to the subalgebras of the chains

gl1 ⊂ gl2 ⊂ · · · ⊂ gln and o2 ⊂ o3 ⊂ · · · ⊂ oN .

The multiplicity spaces V (λ)+
µ corresponding to the pairs of orthogonal and symplectic

Lie algebras oN−2 ⊂ oN and sp2n−2 ⊂ sp2n turned out to carry representations of cer-
tain quantum algebras originally introduced by Olshanski [17] and which are known as
twisted Yangians. The Yangian representation theory together with the theory of Mickels-
son algebras developed in the work by Zhelobenko [19, 20, 21] have lead to a construction
of bases of the Gelfand–Tsetlin type for representations of the orthogonal and symplectic
Lie algebras; see review paper [15] and book [16, Ch. 9] for a detailed exposition of these
results, as well as a discussion of various approaches to constructions of Gelfand–Tsetlin-
type bases in the literature.

The Zhelobenko theory allows one to describe the multiplicity spaces V (λ)+
µ corre-

sponding to the pair g0 ⊂ g as linear spans of lowering operators obtained via the action
of the extremal projector p associated with the Lie algebra g0. Our main general result pro-
vides precise choices of those operators to form a basis of V (λ)+

µ . These choices are made
in the spirit of the FFLV method and rely on some special monomial order. In more detail,
we will assume that g0 ⊂ g is a reductive subalgebra normalised by h. Then g0 inherits
the triangular decomposition g0 = n+

0 ⊕ h0 ⊕ n−0 with n±0 = n± ∩ g0 and h0 = h ∩ g0. Let
n− = n−0 ⊕r be an h-stable vector space decomposition. We describe a family of admissible
monomials m ∈ U(r) such that the elements pmξ form a basis of the multiplicity space
V (λ)+

µ .
Then we apply these results to produce monomial bases for representations of gln and

sp2n which thus provide new answers to the original question of Vinberg, different from
those obtained in [5, 6]. Recall that finite-dimensional irreducible representations of gln
are parameterised by their highest weights λ = (λ1, . . . , λn) which are n-tuples of complex
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numbers satisfying the conditions λi−λi+1 ∈ Z+ for all i = 1, . . . , n−1. The corresponding
representation L(λ) is generated by a nonzero vector ξ such that

Eij ξ = 0 for 1 6 i < j 6 n, and(0·2)

Eii ξ = λi ξ for 1 6 i 6 n,

where the Eij denote the standard basis elements of gln. A Gelfand–Tsetlin pattern Λ asso-
ciated with λ is an array of row vectors

λn1 λn2 · · · λnn

λn−1 1 · · · λn−1n−1

· · · · · · · · ·

λ21 λ22

λ11

where the upper row coincides with λ and the following conditions hold

(0·3) λk i − λk−1 i ∈ Z+, λk−1 i − λk i+1 ∈ Z+, i = 1, . . . , k − 1

for each k = 2, . . . , n.

Theorem A. The vectors

πΛ = E
λ21−λ11
21 E

λ31−λ21
31 E

λ32−λ22
32 . . . E

λn1−λn−1 1

n1 . . . E
λnn−1−λn−1n−1

nn−1 ξ

parameterised by all Gelfand–Tsetlin patterns Λ associated with λ form a basis of L(λ).

Theorem A will be proved as an application of our general results on monomial bases
of multiplicity spaces (Section 1.4). On the other hand, it can also be derived by using
the methods of the Mickelsson algebra theory of Zhelobenko [19, 20, 21]. With a slightly
different, but combinatorially equivalent, description this basis appeared in [18]. We will
show in Section 3 that the basis πΛ is related to the Gelfand–Tsetlin basis of L(λ) via a
triangular transition matrix essentially repeating the argument used in [19, Theorem 7]
and [20, Lemma 2]. Moreover, a triangular transition matrix turns out to relate the basis
πΛ with the monomial basis constructed by Littelmann [10], see Section 3.1 below. This
implies that the transition matrix between the Gelfand–Tsetlin basis and the canonical
basis is also triangular; see Remark 3.3 and Corollary 3.5.

We will regard the symplectic Lie algebra sp2n as a subalgebra of gl2n and we will num-
ber the rows and columns of 2n × 2n matrices with the indices −n, . . . ,−1, 1, . . . , n. Ac-
cordingly, the zero value will be omitted in the summation or product formulas. The Lie
algebra sp2n is spanned by the elements Fij with −n 6 i, j 6 n, defined by

(0·4) Fij = Eij − sgn i sgn j E−j,−i.
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For any n-tuple of nonpositive integers λ = (λ1, . . . , λn) satisfying the conditions

λ1 > λ2 > · · · > λn

the finite-dimensional irreducible representation V (λ) of the Lie algebra sp2n with the
highest weight λ is generated by a nonzero vector ξ such that

Fij ξ = 0 for − n 6 i < j 6 n, and(0·5)

Fii ξ = λi ξ for 1 6 i 6 n.

Define a type C pattern Λ associated with λ as an array of the form

λn1 λn2 λn3 · · · λnn

λ′n1 λ′n2 λ′n3 · · · λ′nn

λn−1 1 λn−1 2 · · · λn−1n−1

λ′n−1 1 λ′n−1 2 · · · λ′n−1n−1

· · · · · · · · ·

λ11

λ′11

such that λni = λi for i = 1, . . . , n, the remaining entries are all nonpositive integers and
the following inequalities hold:

λ′k1 > λk1 > λ′k2 > λk2 > · · · > λ′k k−1 > λk k−1 > λ′kk > λkk

for k = 1, . . . , n, and

λ′k1 > λk−1 1 > λ′k2 > λk−1 2 > · · · > λ′k k−1 > λk−1 k−1 > λ′kk

for k = 2, . . . , n.

Theorem B. The vectors

θΛ =
−→∏

k=1,...,n

(
F
−λ′k 1
k,−k

k−1∏
i=1

F
λk−1 i−λ

′
k i+1

k,−i F
λk i−λ

′
k i+1

−i,−k

)
ξ

parameterised by all type C patterns Λ associated with λ form a basis of V (λ).

The proof of Theorem B will be given in Section 2.1, it will be derived from Theo-
rem A and our general results on monomial bases of multiplicity spaces. In Section 2.2,
we present another basis of U(λ, µ) with somewhat more complicated conditions on the
exponents of the monomials, which can be extended inductively to a basis of V (λ). Fur-
thermore, in Section 4, we will produce a certain modified version ζΛ of the basis of V (λ)
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constructed in [14] and derive explicit formulas for the action of generators of the Lie al-
gebra sp2n in this basis. Then we will demonstrate in Section 5 that the bases θΛ and ζΛ

are related via a triangular transition matrix. This also gives another proof of Theorem B.

Acknowledgments. We are grateful to Arkady Berenstein, Xin Fang, Evgeny Feigin, Ja-
cob Greenstein, Peter Littelmann, and Markus Reineke for useful discussions. A part of
this paper was written during the second author’s visit to the University of Sydney. She
would like to thank the School of Mathematics and Statistics for warm hospitality and
support. The work of the second author was supported by the Heisenberg fellowship of
the DFG.

1. THE FFLV APPROACH TO THE BRANCHING PROBLEM

Let g be a complex reductive Lie algebra and V (λ) be an irreducible finite-dimensional
g-module. Fix a triangular decomposition g = n− ⊕ h ⊕ n+. The Lie algebra n− has a
standard basis consisting of root vectors {f1, . . . , fN}. We choose a total monomial order on
the monomials m ∈ S(n−) in this basis. Recall that by the definition any monomial order
is compatible with multiplication, i.e., satisfies the following two conditions:

� 1 6 m for each monomial m,
� if m1 6 m2 and m3 6 m4, then m1m3 6 m2m4.

The order leads to a filtration on V (λ). Let vλ ∈ V (λ) denote a highest weight vector. By
fixing a sequence of the factors of m ∈ S(n−), we identify m with an element of U(n−) and
say that a monomial m̃ ∈ S(g) is essential if m̃vλ does not lie in the linear span of {mvλ}
with m < m̃. Let Es(V (λ)) = Es(λ) denote the set of essential monomials related to V (λ).
By the construction, {mvλ | m ∈ Es(λ)} is a basis of V (λ), for more details see [7].

For any two finite-dimensional irreducible g-modules V (λ) and V (λ′), one has the in-
clusion

(1·1) Es(λ)Es(λ′) ⊂ Es(λ+ λ′),

see [7, Prop. 2.11]. The proof of that proposition works for any, not necessary homoge-
neous, monomial order. However, the authors remark in the proof that they are using a
homogeneous order and therefore can assume that the root vectors commute. For com-
pleteness, we briefly outline the argument.

Suppose that m =
N∏
i=1

faii is essential for λ and m′ =
N∏
i=1

f
a′i
i is essential for λ′. Set

m̃ = mm′ in S(n−). As an element of U(n−), the monomial m̃ is equal to the product
f
aN+a′N
N . . . f

a1+a′1
1 . Let v = vλ ⊗ vλ′ be a highest weight vector of Vλ+λ′ ⊂ Vλ ⊗ Vλ′ . Then we

have

m̃v ∈
N∏
i=1

(
ai + a′i
ai

)
mvλ ⊗m′vλ′ + (Vλ ⊗ 〈m̂vλ′ | m̂ < m′〉C ⊕ 〈m̂vλ | m̂ < m〉C ⊗ Vλ′) .

5



From this one can conclude that m̃ ∈ Es(λ+ λ′).
The main novelty of our approach to the branching problem is that we combine the

FFLV method with the more classical theory of Zhelobenko. In particular, the extremal
projector will be playing a major role.

1.1. The extremal projector. Let ∆+ be the set of positive roots of g which is determined
by the triangular decomposition so that n+ (resp., n−) is spanned by the root vectors eα
(resp., fα) with α ∈ ∆+. Consider the sl2-triples {fα, hα, eα} ⊂ g and assume that the roots
are normalised to satisfy the condition α(hα) = 2. Set

pα = 1 +
∞∑
k=1

fkαe
k
α

(−1)k

k!(hα + ρ(hα) + 1) . . . (hα + ρ(hα) + k)
,

ρ is the half sum of the positive roots. This expression is regarded as an element of the
algebra of formal series of monomials

f r1α1
. . . f rNαN

ekNαN
. . . ek1α1

with (k1 − r1)α1 + . . .+ (kN − rN)αN = 0

with coefficients in the field of fractions of the commutative algebra U(h). Choose a num-
bering of positive roots, α1, . . . , αN . A total order on ∆+ is said to be normal if either
α < α + β < β or β < α + β < α for each pair of positive roots α, β such that α + β ∈ ∆.
Choose a normal order α1 < · · · < αN and set

p = pα1 . . . pαN
.

The element p is called the extremal projector. It was introduced by Asherova, Smirnov,
and Tolstoy in [1]. The projector is independent of the choice of a normal order. A more
detailed description of its properties can be found in the work by Zhelobenko [20, 21]. In
particular, p is characterised by the properties p2 = p and

(1·2) eαp = pfα = 0 for all α ∈ ∆+.

1.2. The specifics of branching. A subalgebra q ⊂ g is a reductive subalgebra if q is reduc-
tive and the centre of q consists of adg-semisimple elements.

Let g0 ⊂ g be a reductive subalgebra normalised by h. Then g0 inherits the triangular
decomposition, g0 = n+

0 ⊕ h0 ⊕ n−0 , where n±0 = n± ∩ g0. In order to see the branching
rules g ↓ g0, we need a certain special monomial order. Let n− = n−0 ⊕ r be the h-stable
decomposition. Write m = m0m1, where m0 ∈ S(n−0 ) and m1 ∈ S(r). Having two mono-
mials m = m0m1 and m′ = m′0m

′
1, we first compare m1 with m′1 and if m1 < m′1, then

m < m′. If m1 = m′1, then we compare m0 with m′0. The order on the S(n−0 )-factors is of
no particular importance. When identifying m0m1 ∈ S(n−) with an element of U(n−), we
take a monomial from U(n−0 )U(r).
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Let m1 ∈ U+(r) be a monomial having our chosen sequence of factors. The most crucial
restriction on the monomial order is that

(1·3) xm1vλ = [x,m1]vλ ∈
〈
m̃vλ | m̃ ∈ S(n−), m̃ < m1

〉
C

for each dominant weight λ and each x ∈ n+
0 . We will assume that it is satisfied. If m̃ < m1

and m1 ∈ S(r), then m̃ = m̃0m̃1, where m̃1 < m1. Therefore (1·3) implies that

(1·4) Xm1vλ ∈
〈
m̃vλ | m̃ ∈ S(n−), m̃ < m1

〉
C

for each dominant weight λ and each X ∈ U(g0)n+
0 .

Let p be the extremal projector associated with g0. Set N ′ = dim n−0 . Suppose that
w ∈ V (λ) is a weight vector such that pw is well-defined. Then pw is equal to w plus a
finite linear combination of expressions

f r1α1
. . . f rN′αN′

ekN′αN′
. . . ek1α1

w,

where k1 + . . .+ kN ′ > 0. By (1·4), we have

(1·5) pm1vλ ∈ m1vλ + 〈m̃vλ | m̃ < m1〉C
whenever pm1vλ is well-defined (that is, the values of the denominators occurring in
pm1vλ are not zero).

Proposition 1.1. Keep the above notation and the assumptions on the monomial order. Then
pm1vλ is well-defined for each m1 ∈ Es(λ) ∩ S(r) and the set of vectors

{pm1vλ | m1 ∈ Es(λ) ∩ S(r)}

is a basis of the subspace V (λ)+ =
⊕
µ

V (λ)+
µ .

Proof. One observes easily that V (λ)+ is spanned by pmvλ, where m ∈ Es(λ) and the h0-
weight of mvλ is dominant for g0. If m 6∈ S(r), then pm = 0 by (1·2) and our assumption
on the sequence of factors in U(n−). It remains to prove that the vectors in question are
well-defined and linearly independent.

Assume that pm1vλ is not well-defined for some m1 ∈ Es(λ) ∩ S(r). Then the weight
of u = m1vλ is not dominant for g0. Let {e, h, f} ⊂ g0 be an sl2-triple such that e ∈ n+

0

is a simple root vector and hu = −du for some d > 0. By the standard sl2-theory, which
includes classification of the finite-dimensional sl2-modules, there is k = d+ 2k′ such that

u lies in
k⊕
t=d

StC2 up to an isomorphism. Therefore one can find elements a(t) ∈ C such

that

u =
d+k′∑
t=d

a(t)f tetu.

Here each etm1vλ , and hence also each f tetm1vλ, lies in 〈m̃vλ | m̃ < m1〉C , see (1·4). There-
fore m1 is not essential for λ.
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Assume finally that a non-trivial linear combination of pm1vλ with m1 ∈ Es(λ) ∩ S(r)

is equal to zero. Then by (1·5), the largest monomial appearing in it with a non-zero
coefficient is not essential for λ. �

The inclusion (1·1) justifies the following definition.

Definition 1.2. The subset

Γ = Γg↓g0 := {(λ,m1) | m1 ∈ Es(λ) ∩ S(r)} ⊂ h∗ × S(r), where λ is dominant,

is called the branching semigroup of g ↓ g0. Set also Γ(λ) = {m1 | (λ,m1) ∈ Γ}.

Note that the above objects depend on the basis of n−, on the monomial order, and on
the sequence of factors in U(n−). A standard procedure for calculating Γ is to consider
first small values of λ, like the fundamental weights $i, obtain enough elements in Γ(λ),
and then compare the cardinality with the dimension of V (λ)+. However, this approach
can produce a description of Γ only if the semigroup is finitely generated.

Example 1.3. As we will see below, the semigroup Γ = Γsln↓gln−1
is generated by the pairs

($i,m1) with m1 ∈ Γ($i) and 1 6 i < n.

1.3. Inductive bases for V (λ). Next we show how branching rules lead to constructions
of FFLV-type bases.

Proposition 1.4. We have m0m1 ∈ Es(λ) if and only if m1 ∈ Γg↓g0(λ) and m0 ∈ Es(µ), where
µ = µ(m1vλ) is the weight of m1vλ w.r.t. h0.

Proof. Suppose first that m0m1 ∈ Es(λ). If m1 is not essential for λ, then

m1vλ =
∑
k

A(k)a0(k)a1(k)vλ

for some A(k) ∈ C, some monomials a0(k) ∈ U(n−0 ) and a1(k) ∈ U(r), and a1(k) < m1

for all k. In this case m0a0(k)a1(k) < m0m1 for each k and hence m0m1 is not essential, a
contradiction.

If m0 6∈ Es(µ), then

m0pm1vλ =
∑
k

B(k)b0(k)pm1vλ

for some B(k) ∈ C, some monomials b0(k) ∈ U(n−0 ), and we have b0(k) < m0 for each k.
Since m1vλ is the leading term of pm1vλ by (1·5), we conclude that m0m1 is not essential, a
contradiction.

Now we know that

|Es(λ)| 6
∑

m1∈Γ(λ)

|Es(µ(m1vλ))| = dimV (λ).
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Since also |Es(λ)| = dimV (λ), we can conclude that each product m0m1, where m1 and
m0 are essential for λ and µ, respectively, is essential for λ. This completes the proof. �

Remark 1.5. One can also give a direct proof of the inclusion Es(µ)Γg↓g0(λ) ⊂ Es(λ) avoid-
ing dimension reasons.

1.4. The Gelfand–Tsetlin order in type A. Here we show how the FFLV method leads to
a construction of the basis described in Theorem A. A slightly different description of the
same basis is presented in [18], where some PBW-type bases related to crystal graphs are
considered. Our proof involves neither the canonical basis of Lusztig nor quiver repre-
sentations.

Take g = gln and g0 = gln−1 that is the span of Eij with 1 6 i, j < n. Then r is
the linear span of Enk with 1 6 k < n. Note that [r, r] = 0. Hence the sequence of
factors in m1 ∈ U(n−) is of no significance. The h0-weights of Enk with 1 6 k < n are
linearly independent. If m1 6= m̃1 and pm1vλ 6= 0, then pm1vλ 6= pm̃1vλ. The branching
gln ↓ gln−1 is multiplicity free, which is the key point of [8]. Given a highest weight µ such
that U(λ, µ) 6= 0, there is a unique way to write the corresponding m1 ∈ Es(λ), which
exists by Proposition 1.1. Since the branching rules are well-known, we description of
Γ(λ) results from Proposition 1.1 immediately. Write λ = (λ1, . . . , λn) with λk − λk+1 ∈ Z+

for k = 1, . . . , n− 1.

Corollary 1.6. For each monomial order satisfying the assumptions of Section 1.2,

Γgln↓gln−1
(λ) = {Eα1

n 1 . . . E
αn−1

nn−1 | αk 6 λk − λk+1}.

Hence, the semigroup Γgln↓gln−1
is generated by the sets {($k, 1), ($k, Enk)} for 1 6 k < n; that

is, by the 1-dimensional representations of gln together with Γ($k) for 1 6 k < n.

An example of a suitable, i.e., satisfying (1·3), monomial order on S(r) is the lexico-
graphical order on Eα1

n 1 . . . E
αn−1

nn−1, which is also the right lexicographical order on the tu-
ples (αn−1, . . . , α1).

The elements of Γgln↓gln−1
(λ) can be parameterised by the Gelfand–Tsetlin patterns Λ, as

defined in (0·3). Each such Λ corresponds to the monomial

m1(Λ) = E
λn 1−λn−1 1

n 1 . . . E
λnn−1−λn−1n−1

nn−1 .

Arguing inductively with the use of Proposition 1.4, we restrict L(λ) further to gln−2,
gln−3, and so on. Taking the sequence of factors

E
α2,1

2 1 E
α3,1

3 1 E
α3,2

3 2 . . . E
αn,1

n 1 . . . E
αn,n−1

nn−1
9



in U(g) and the lexicographical order at each step we obtain the basis of Theorem A. An
alternative way to express this basis is to write

Es(λ) =

{∏
E
αi,j

i j | αi,j 6 λj − λj+1 +
n∑

k=i+1

(αk,j+1 − αk,j)

}
.

This is the set of inequalities given in [18, Introduction]. The same inequalities are used
in [2, Sec. 6] for a description of a different, but related, basis.

The inductive argument shows also that the semigroup Γ = Γsln↓{0} is generated by
Γ($k) with 1 6 k < n.

The next example is crucial for the symplectic case.

Example 1.7. Consider gln−1 ⊂ gln+1 embedded as the middle (n− 1)× (n− 1)-square. For
elements of U(r), we are using the following sequence of root vectors:

n∏
k=2

E
αn+1,k

n+1 k

n+1∏
k=2

E
αk,1

k 1 .

The monomial order is given by the right lexicographical order on the tuples

(αn+1,n, . . . , αn+1,2, α2,1, . . . , αn+1,1).

Here Γgln+1↓gln−1
(λ) is equal to{

n∏
k=2

E
αn+1,k

n+1 k

n+1∏
k=2

E
αk,1

k 1 | αk+1,1 6 λk − λk+1 and αn+1,k 6 λk − λk+1 + αk,1 − αk+1,1

}
.

This branching semigroup is generated by 1-dimensional representations of gln+1 and by
the essential monomials of the fundamental weights. Record that

(1·6)
Γgln+1↓gln−1

($1) = {1, E2 1, En+1 2E2 1};
Γgln+1↓gln−1

($k) = {1, Ek+1 1, En+1 k, En+1 k+1Ek+1 1} if 2 6 k < n;

Γgln+1↓gln−1
($n) = {1, En+1 1, En+1n}.

2. SYMPLECTIC BRANCHING RULES

In this section we take g = sp2n and use the presentation of the symplectic Lie algebra
defined in the Introduction. The subalgebra g0 = sp2n−2 is spanned by the elements Fij
with −n+ 1 6 i, j 6 n− 1. Let g = n− ⊕ h⊕ n+ be the triangular decomposition, where h

is the Cartan subalgebra of g with the basis {F11, . . . , Fnn}, while the subalgebra n+ (resp.,
n−) is spanned by the elements Fij with i < j (resp., i > j). We have a vector space
decomposition n− = n−0 ⊕ r, where r = 〈Fn i | i < n〉C is a Heisenberg Lie algebra and [r, r]

is spanned by Fn,−n. The elements from different pairs (Fn,i, Fi,−n), (Fn,j, Fj,−n) commute
with each other and [Fn,i, Fi,−n] = Fn,−n, where Fn,−n is a central element of r.
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2.1. The Gelfand–Tsetlin-type order in the symplectic case. We will describe a rather
elaborate monomial order on S(r) suggested by the structure of the branching semigroup
of Example 1.7.

Definition 2.1. Define a monomial order on S(r) by the following rule. The monomial

(2·1) Fα1
n,−nF

α2
n,−n+1 . . . F

αn
n,−1F

αn+1

n,1 . . . F
α2n−1

n,n−1

given by ᾱ = (α1, . . . , α2n−1) is smaller than the monomial given by ᾱ′ = (α′1, . . . , α
′
2n−1) if

and only if:

either
n∑
i=1

αi <
n∑
i=1

α′i; or
n∑
i=1

αi =
n∑
i=1

α′i and

either α1 < α′1; or α1 = α′1 and the (n−1)-tuple(
n+1∑
i=2

αi,
n+2∑
i=2

αi, . . . ,
2n−1∑
i=2

αi

)
is smaller than or equal to

(
n+1∑
i=2

α′i,
n+2∑
i=2

α′i, . . . ,
2n−1∑
i=2

α′i

)
in the lexicographical order, whereat if they are equal, then

(α2, . . . , αn) < (α′2, . . . , α
′
n) in the lexicographical order.

Lemma 2.2. Choose the sequence of factors in U(r) as in (2.1). Then the monomial order of
Definition 2.1 satisfies (1·3).

Proof. Take x ∈ n+
0 and m1 ∈ U(r) given by ᾱ as in (2·1) . Then [x,m1] is a linear combina-

tion of monomials such that in each of them, one Fn,i with i > −n is replaced by [x, Fn,i].
Note that [x, Fn,i] ∈ 〈Fn,k | k > i〉C. The next step is to bring each new Fn,j with j > i to its
place. In S(r), we have Fn,j m

Fn,i
< m if m is divisible by Fn,i.

It may happen that the new element Fn,j has to change places with Fn,−j . In that case we
have to consider also the monomial m̃1 = Fn,−n

m
Fn,iFn,−j

∈ S(r). Fortunately, this problem
appears only if i < 0 and j > 0. Here the sum α1 + . . . + αn gets smaller when we pass
from m1 to m̃1. Therefore m̃1 < m1. �

Let Γ̃ be the branching semigroup of g ↓ g0 defined by the sequence of root vectors as
in (2.1) and the monomial order of Definition 2.1.

Theorem 2.3. The semigroup Γ̃ is generated by the pairs ($i,m1), where $i is a fundamental
weight and m1 ∈ Γ̃($i). Under a suitable identification, Γ̃ is defined by the same inequalities as
the semigroup Γsln+1↓gln−1

.

Proof. We use the bijection between the sets

{Fn,k | −n 6 k < n, k 6= 0} and {En+1 k, Et 1 | 1 6 k 6 n, 2 6 t 6 n}
11



which takes Fn,−n to En+1 1, the vector Fn,−k with 1 6 k < n to En+1n−k+1, and Fn,k to
En+1−k 1. Using the same letters, $i, for the fundamental weights of both sp2n and sln+1,
we identify also the highest weights λ =

∑
ci$i of sp2n and sln+1. Then the standard

branching theory assures that |Γ̃(λ)| = |Γsln+1↓gln−1
(λ)|, see e.g. [15] and patterns in the

Introduction. Since we have the property Γ̃(λ)Γ̃(λ′) ⊂ Γ̃(λ + λ′), see (1·1), it remains to
show that the image of each Γ̃($k) is exactly Γsln+1↓gln−1

($k). The latter is presented in
(1·6). Let vr ∈ V ($r) be a highest weight vector.

Take $1. Here |Γ($1)| = 3. Notice that Fn,n−1v1 6= 0 is a highest weight vector of g0 and
that Fn,n−1 is the smallest root vector in the monomial order. Therefore Fn,n−1 ∈ Es($1).
This root vector is mapped to E2 1 ∈ Γsln+1↓gln−1

($1). It remains to take care of the second
copy of the trivial representation, which one obtains by applying either Fn,−n or Fk,−nFn,k
with 1 6 k < n to v1. The smallest monomial here is Fn−1,−nFn,n−1. Since Fn−1,−n is
mapped to En+1 2, we see that the image of Γ($1) is exactly Γsln+1↓gln−1

($1).
Take next$k with 2 6 k < n. Here |Γ($k)| = 4. The monomials of degree 1 in Γ($k) are

Fk−n,−n and Fn,k−n−1. The root vector Fn,−n does not appear, because it can be replaced by
Fn,k−n−1Fk−n−1,−n, which is smaller. We have also Fi,−nvk = 0 if i < k−n−1. Therefore, in
degree 2 we have to choose the smallest monomial among Fn,tFt,−n with k−n−1 6 t 6 −1.
This is exactly Fn,k−n−1Fk−n−1,−n. Therefore the image of Γ($k) is Γsln+1↓gln−1

($k).
Finally take $n, where we have Γ̃($n) = {1, Fn,−n, F1,−n}. Note that Fn,−n is mapped to

En+1 1 and F1,−n to En+1n. This finishes the proof. �

If λ =
n∑
k=1

ck$k is presented by a tuple (λ1, λ2, . . . , λn) as in the Introduction, cf. (0·5),

then c1 = λn−1−λn, for 2 6 k < n, we have ck = λn−k−λn−k−1, and cn = −λ1. Consistently,
we write µ = (µ1, . . . , µn−1) with 0 > µ1 > . . . > µn−1. Taking this into account and using
bijections between the branching semigroups and the corresponding patterns (Gelfand–
Tsetlin patterns and type C patterns), we obtain the following statement.

Corollary 2.4. The vector space V (λ)+
µ has a basis{

pF−ν1n,−nF
µn−1−νn
n,−n+1 F

λn−1−νn
n,n−1 . . . F

µk−νk+1

n,−k F
λk−νk+1

n,k . . . F µ1−ν2
n,−1 F λ1−ν2

n,1 vλ

}
,

parameterised by the n-tuples ν = (ν1, . . . , νn) satisfying the betweenness conditions

(2·2)
0 > ν1 > λ1 > ν2 > λ2 > · · · > νn−1 > λn−1 > νn > λn,

0 > ν1 > µ1 > ν2 > µ2 > · · · > νn−1 > µn−1 > νn.

Going inductively through the chain of subalgebras

(2·3) sp2 ⊂ . . . ⊂ sp2n−2 ⊂ sp2n
12



and using Proposition 1.4 at each step, we obtain the basis of Theorem B. The chain defines
also the branching semigroup Γ̃sp2n↓{0}, where the order of Definition 2.1 is used at each
step.

Remark 2.5. Arguing inductively, one shows that Γ̃sp2n↓{0} is generated by Γ̃sp2n↓{0}($k)

with 1 6 k 6 n. The saturation property can be checked inductively as well. It holds at
each step because of the bijection between Γ̃sp2n↓sp2n−2

and Γsln+1↓sln−1 . Therefore Γ̃sp2n↓{0} is
saturated. In this situation, there is a nice toric degeneration of the complete flag variety
[7, Sec. 10], [4, Sec. 15].

2.2. A different, more natural, order. In this section, we use different indices for the
matrix realisation of g = sp2n. Now g is the linear span of Fi j with i, j ∈ {1, . . . , 2n},
where

(2·4) Fi j = Ei j − εi εj Ej′ i′ , i′ = 2n− i+ 1,

εi = 1 for i 6 n, and εi = −1 for i > n. The subalgebra g0 = sp2n−2 is spanned by the
elements Fi j with i, j ∈ {2, . . . , 2n− 1}. We have r = 〈F2nk | 1 6 k < 2n〉C.

Fix highest weights λ = (λ1, . . . , λn) for g and µ = (µ2, . . . , µn) for g0, where we suppose
that λ1 > λ2 > . . . > λn > 0 and µ2 > µ3 > . . . > µn > 0, and that the multiplicity space
U(λ, µ) is nonzero.

Set ai = |λi − µi| for i > 2 and define the monomial Y (µ) = yann . . . ya22 by the rule:

yi = Fi 1 if λi 6 µi and yi = F2n i if λi > µi.

Now use a non-zero vector ξµ ∈ V (λ)+
µ defined in the formula [16, (9.69)]. Writing the

formula in our notation, we get

F1 1ξµ =
(
λ1 −

n∑
i=2

(2 max(λi, µi)− λi − µi)
)
ξµ =

(
λ1 −

n∑
i=2

ai

)
ξµ.

Hence, the h-weight of ξµ coincides with that of the vector Y (µ)vλ.

Remark 2.6. By the weight considerations, we have ξµ = pY (µ)vλ and at the same time

ξµ =
n∏
i=2

(pyi)
ai vλ, up to a non-zero scalar factor.

We would like to find inequalities for b, bn, . . . , b2 such that the corresponding vectors

pF b
2n 1(F2nnFn 1)bn . . . (F2n 2F2 1)b2Y (µ)vλ

form a basis of V (λ)+
µ . For this purpose, the most natural monomial order on S(r) is

suitable.

For a vector ᾱ = (α2, . . . , α2n−1), set |ᾱ| =
2n−1∑
k=2

αk.

13



Definition 2.7. We say that Fα2n
2n 1F

α2
2n 2 . . . F

α2n−1

2n 2n−1 < F β2n
2n 1F

β2
2n 2 . . . F

β2n−1

2n 2n−1 if and only if
either |ᾱ| < |β̄| or |ᾱ| = |β̄| and there is k such that 2 6 k 6 2n and

αk < βk, αi = βi for all i < k.

A few remarks on the definition are due.
(1) Since we are comparing the degrees first, the sequence of factors of m1 ∈ U(r) is not
significant for being essential.
(2) The chosen order satisfies (1·3). Therefore, by Proposition 1.1, the subspace V (λ)+ has
a basis {pm1vλ | m1 ∈ Es(λ) ∩ S(r)}.

Lemma 2.8. We have

Γ($1) = {1, F2n 1, F2 1},

Γ($k) = {1, F2n 1, F2nk, Fk+1 1} if 2 6 k < n,

Γ($n) = {1, F2n 1, F2nn}.

Proof. The statements can be obtained by direct calculations. �

The dimension of U(λ, µ) is the product of n positive integers (d1 +1) . . . (dn+1), where

di = min(λi, µi)−max(λi+1, µi+1),

assuming that min(λ1, µ1) = λ1 and λn+1 = µn+1 = 0; see e.g. [15].
Consider the sl2-triple {1

2
F2n 1, F1 1,

1
2
F1 2n}. The corresponding subalgebra of g acts on

U(λ, µ), this representation is isomorphic to the tensor product Sd1C2⊗ . . .⊗SdnC2. More-
over,

ξµ ∈ V (λ)+
µ
∼= U(λ, µ)

is a highest weight vector of this representation and its F1 1-weight is equal to d1 + . . .+dn.
For a vector Y = yann . . . ya22 , where each yi is either Fi 1 or F2n i, set

ιi =

{
0 if yi = Fi 1,

1 if yi = F2n i.

This defines a vector ῑ = (ι2, . . . , ιn), which depends on Y . Set ι1 = 0 and an+1 = 0.
We have

λ = (λ1 − λ2)$1 + . . .+ (λn−1 − λn)$n−1 + λn$n.

Set cn = λn and ck = (λk − λk+1) for k < n. Suppose that ξµ = pY vλ 6= 0 for some Y as
above. It is not difficult to see then that

(2·5) dk = ck − ιkak − (1− ιk+1)ak+1

for each k > 2. Informally speaking, each yi in Y decreases ck by 1 if yi ∈ Γ($k). More
formally, if yi ∈ Γ($k), then ai 6 ck and therefore yaii ∈ Γ($k)

ck ⊂ Γ(ck$k). Thus,
14



Y ∈ Γ(λ). Note that Equation (2·5) defines the numbers dk = dk(Y ) for each vector Y as
above.

The next step is to consider Γ($k+$j) with k 6= j.

Lemma 2.9. Suppose that j > k and λ = $k +$j . Then

Es(λ) ∩ S(r)h0 = {1, F2n 1, F
2
2n 1, F2n jFj 1}.

Proof. Set µ = λ|h0 . Then dimU(λ, µ) = 4. As a representation of sl2 = 〈F2n 1, F1 1, F1 2n〉C ,
it decomposes as C3 ⊕ C. Since F2n 1 ∈ Γ($i) for each i, we have F2n 1, F

2
2n 1 ∈ Es(λ). It

remains to show that F2n jFj 1 is essential. In the case k = j − 1, this follows form the
inclusion (1·1) and Lemma 2.8. Therefore suppose that k < j − 1. Then dimV (λ)+ = 16

and Γ(λ) is the disjoint union of three subsets, X = {1, F2n 1, F2nk, F2n j, Fk+1 1, Fj+1 1}, the
product F2n 1X , and the subset

{F2nkF2n j, F2nkFj+1 1, Fk+1 1F2n j, Fk+1 1Fj+1 1, x},

where pxvλ ∈ V (λ)+
µ and the F1 1-weight of x is −2. Since F2n 1 ∈ X , these two conditions

on x imply that x = F2n tFt 1 for some t 6 n.
First we show that t 6 j. If j < n, take s > j. Let us regard V ($r) as

∧r Cn of the vector
representation Cn with the standard basis v1, . . . , vn. Then vr = v1 ∧ . . . ∧ vr is a highest
weight vector of V ($r). Set u = F2n sFs 1(vk ⊗ vj). Then u = 1

2
Fn−n(vk ⊗ vj) + u′, where

u′ = (vs ∧ v2 ∧ . . . ∧ vk)⊗ (vs′ ∧ v2 ∧ . . . ∧ vj) + (vs′ ∧ v2 ∧ . . . ∧ vk)⊗ (vs ∧ v2 ∧ . . . ∧ vj).

Here s′ > n > s and u′ = 1
2
Fs′ sũ for

ũ = (vs ∧ v2 ∧ . . . ∧ vk)⊗ (vs ∧ v2 ∧ . . . ∧ vj).

Thereby pu′ = 0 by (1·2), hence pu = 1
2
F2n 1(vk ⊗ vj) and Fs 1F2n s is not essential for

$k +$j . We have shown that x > Fj 1F2n j .
Assume that Fj 1F2n j is not essential. Then w = Fj 1F2n j(vk ⊗ vj) lies in the linear span

of smaller than Fj 1F2n j essential monomials. Each such monomial is of the form m0m1,
where m1 has weight −2 w.r.t. F11 and m1 < Fj 1F2n j . This is possible only for F2n 1,
F2n jFk+1 1, and Fj+1 1Fk+1 1.

The decomposition V ($1) = Cv1 ⊕ V ′($1) ⊕ Cv2n leads to a g0-invariant tri-grading
on each V ($r). In the tensor product V ($k) ⊗ V ($j), the vector F2n jFj 1(vk ⊗ vj) has
non-zero summands of degrees

(0, k − 1, 1; 1, j − 1, 0), (0, k, 0; 1, j − 2, 1), (0, k, 0; 0, j, 0).

The monomials F2n jFk+1 1 and Fj+1 1Fk+1 1 produce vectors of degrees

(0, k, 0; 1, j − 2, 1), (0, k, 0; 0, j, 0), and (0, k, 0; 0, j, 0).
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This implies that the summand of degree (0, k − 1, 1; 1, j − 1, 0), which is equal to

w = (v2n ∧ v2 ∧ . . . ∧ vk)⊗ (v1 ∧ . . . ∧ vj),

is written as am0F2n 1(vk ⊗ vj) for some a ∈ C and m0 ∈ U(n−0 ). However, F2n 1(vk ⊗ vj) =

2(w + w̃), where w̃ 6= 0 is of degree (1, k − 1, 0; 0, j − 1, 1). This contradiction finishes the
proof. �

Proposition 2.10. (i) The defining inequalities for Γ(λ) in terms of

F b
2n 1(F2nnFn 1)bn . . . (F2n 2F2 1)b2yann . . . ya22

are:

0 6 dk, where the numbers dk are given by (2·5),(2·6)

bk 6 dk,(2·7)

bk 6 d1 +
k−1∑
i=2

(di − 2bi) for each k such that 2 6 k 6 n;(2·8)

b+ 2
n∑
k=2

bk 6
n∑
i=1

di.(2·9)

(ii) The semigroup Γ is generated by Γ($t) and Γ($k+$j) with 1 6 t, k, j 6 n and j > k + 1.

Proof. (i) The inequalities (2·6) are equivalent to U(λ, µ) 6= 0, where µ is the h0-weight
of yann . . . ya22 vλ. Each weight µ such that U(λ, µ) 6= 0 defines the tuple ā = (a2, . . . , an)

uniquely. Let ā be fixed.
Next we show that the number of tuples (b, bn, . . . , b2) ∈ Zn+ satisfying the inequalities

(2·7)–(2·9) is equal to
n∏
i=1

(di + 1) = dimU(λ, µ). We argue by induction on n. If n = 1, then

there is just one inequality b 6 d1. There are d1 + 1 possibilities for b.
Suppose that n = 2. Then b2 6 d1, d2. Each admissible b2 corresponds to the irreducible

sl2-submodule of Sd1C2⊗ Sd2C2 of dimension d1 + d2 + 1− 2b2. If b2 is fixed, then there are
exactly d1 +d2−2b2 + 1 possibilities for b. For n = 2, the number of tuples (b, b2) is correct.

Suppose now that n > 2 and that for n − 1 there is a bijection between the tuples
b̄ = (b2, . . . , bn−1) satisfying the inequalities and the irreducible sl2-submodules of

Sd1C2 ⊗ . . .⊗ Sdn−1C2

such that the module V (b̄) corresponding to b̄ is of dimension
n−1∑
i=1

di + 1− 2
n−1∑
i=2

bi.

The irreducible submodules of V (b̄)⊗ SdnC2 can be enumerated by integers bn such that

0 6 bn 6 min(dn, dimV (b̄)− 1).
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We can arrange the submodules in such a way that the dimension decreases when bn

increases. Then bn, or rather (b2, . . . , bn−1, bn), corresponds to the summand of dimension
n∑
i=1

di + 1− 2
n∑
i=2

bi.

This completes the inductive argument.
In the proof of part (ii) below, we show that each admissible tuple

(a2, . . . , an, b, b2, . . . , bn)

defines a monomial of Γ(λ). Hence by the dimension reasons, (i) holds.
(ii) For convenience, we will identify the monomials m1 ∈ Γ(λ) with the tuples of their

exponents and use additive notation for Γ(λ), so that Γ(λ) + Γ(λ′) ⊂ Γ(λ+ λ′); see (1·1).
Let (b̄, ā) with b̄ = (b, b2, . . . , bn), ā = (a2, . . . , an) be an admissible tuple. Recall that each

yi belongs to a unique Γ($s) with s = s(i). Set λ̃ = λ −
n∑
i=2

ai$s(i). In view of (2·5), we

have λ̃ =
n−1∑
i=1

di$i. The inequalities (2·6) guaranty that λ̃ is a dominant weight of g. If b̄,

identified with (b̄, 0̄), lies in Γ(λ̃), then

(b̄, ā) ∈ Γ(λ̃) +
n∑
i=2

aiΓ($s(i)) ⊂ Γ(λ).

Next we express b̄ as a sum of tuples belonging to sets Γ($t) and Γ($k + $j) and show
that indeed b̄ ∈ Γ(λ̃).

If all dk are zero, then b̄ = 0 and there is nothing to prove. Suppose next that dk 6= 0

only for k = i. Then bj = 0 for all j > 2 and only F b
2n 1 with b 6 di is left. Here b̄ ∈ diΓ($i).

The proof continues by induction on |b̄| = b+ b2 + . . .+ bn.
Let k < r be the smallest integers such that dr, dk 6= 0. Note that b2 = . . . = br−1 = 0.

If all bi with i > 2 are equal to zero, then b̄ = (b, 0, . . . , 0), where b 6
n∑
i=1

di. Again, such b̄

belongs to
n∑
i=1

diΓ($i) ⊂ Γ(λ̃). Therefore assume that b̄ 6= (b, 0, . . . , 0).

Let j > r be the smallest integer such that br 6= 0. We divide our monomial by F2n jFj 1,
which is an element of Γ($k+$j) by Lemma 2.9. Note that in case j = k + 1, we have
F2n jFj 1 ∈ Γ($j)Γ($k). The division corresponds to replacing b̄ with b̄′ = (b, b′2, . . . , b

′
n),

where b′i = bi for i 6= j and b′j = bj − 1. Accordingly, set λ′ = λ̃ − ($k + $j). We have

λ′ =
n∑
i=1

d′i$i, where d′i = di for i 6= k, j and d′i = di− 1 for i ∈ {k, j}. The next task is to see

that the inequalities (2·7)–(2·9) hold for b̄′ and λ′.
Consider (2·7). For i 6= k, j, we have b′i = bi 6 di = d′i. If k = 1, then there is no bk. If

k > 2, then b′k = bk = 0 and bk 6 d′k. Finally, b′j = bj − 1 6 dj − 1 = d′j . These inequalities
hold.
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Consider (2·8). For s < j, we have bs = 0. Clearly, the inequalities hold for all such s.
For the index j, we have

b′j 6

(
j−1∑
t=1

dt

)
− 1 =

j−1∑
t=1

d′t = d′1 +

j−1∑
t=2

(d′t − 2b′t).

For s > j, the new right hand side d′1 +
s−1∑
t=2

(d′t − 2b′t) is equal to the old one. Since b′s = bs

here, all the inequalities hold.
Finally, consider (2·9). We have

n∑
i=1

d′i − 2
n∑
t=2

b′t =
n∑
i=1

di − 2
n∑
t=2

bt.

Hence the inequality for b holds.
Summing up, b̄′ belongs to Γ(λ′), because |b̄′| < |b̄|, and hence b̄ belongs to Γ(λ̃). �

The perspective on U(λ, µ) taken in this section differs from the usual one. In order to
obtain a basis, we have regarded U(λ, ν) as a direct sum of sl2-modules instead of a tensor
product. On the one side, this leads to a more complicated set of inequalities, on the other,
we are getting one more basis.

Set p̃ = psl2p, where psl2 is the extremal projector associated with sl2 = 〈F2n 1, F1 1, F1 2n〉C
and p is the projector of g0 as before. Let us restrict V (λ) to g0 ⊕ sl2.

Corollary 2.11. The subspace of V (λ)+ ∩ V (λ)F1 2n has a basis

{p̃m1vλ | m1 ∈ Γ(λ) is given by exponents (0, b2, . . . , bn, a2, . . . , an)}.

The chain of subalgebras (2·3) can be used in order to extend the basis of Proposi-
tion 2.10 to a basis for V (λ).

3. RELATIONS TO THE GELFAND–TSETLIN AND LITTELMANN BASES

We start by recalling a construction of the celebrated basis of Gelfand and Tsetlin [8] for
each finite-dimensional irreducible representation L(λ) of gln as defined in the Introduc-
tion. We refer the reader to the review paper [15] where several such constructions are
discussed and we will follow the notation of that paper.

Consider the extremal projector p associated with the Lie algebra gln−1. Recall that
the Mickelsson–Zhelobenko algebra Z(gln, gln−1) is generated by the elements Enn, pEin and
pEni with i = 1, . . . , n − 1; see [15, Sec. 2.3] for the definitions. The lowering operators are
elements of the universal enveloping algebra U(gln) which can be defined by the formulas

(3·1) znk = pEnk (hk − hk+1) · · · (hk − hn−1),
18



where hk = Ekk − k + 1. By the branching rule, the restriction of L(λ) to the subalgebra
gln−1 is isomorphic to the direct sum of irreducible gln−1-modules L′(µ),

L(λ)|gln−1
' ⊕

µ
L′(µ),

summed over the highest weights µ = (µ1, . . . , µn−1) satisfying the betweenness condi-
tions

(3·2) λi − µi ∈ Z+ and µi − λi+1 ∈ Z+ for i = 1, . . . , n− 1.

The gln−1-submodule in L(λ) isomorphic to L′(µ) is generated by the vector

ξµ = zλ1−µ1n1 . . . z
λn−1−µn−1

nn−1 ξ.

In the next lemma we suppose that the highest weights µ and µ′ satisfy conditions (3·2)
and we use the lexicographical ordering � on such weights, where for complex numbers
a and b we assume that a > b if and only if a− b ∈ Z+.

Lemma 3.1. For any given µ, in the module L(λ) we have

E
λ1−µ1
n1 . . . E

λn−1−µn−1

nn−1 ξ = c ξµ +
∑
µ′�µ

u(µ′) ξµ′

for a nonzero constant c and some elements u(µ′) ∈ U(n−0 ), where the sum is taken over the highest
weights µ′ satisfying conditions (3·2).

Proof. Starting from the rightmost generator which occurs in the product on the left hand
side and proceeding to the left, we use the inversion formula

Enk = pEnk +
∑

k<k1<···<ks<n

Ek1kEk2k1 . . . Eksks−1 pEnks
1

(hks − hk)(hks − hk1) · · · (hks − hks−1)
,

summed over s = 1, 2, . . . . Arguing by induction, observe that each generator Enl with
l 6 k commutes with all factors Ek1k, Ek2k1 , . . . , Eksks−1 so that the proof is completed
by using (3·1) and taking into account the fact that the lowering operators znk pairwise
commute. �

The vectors ξΛ of the Gelfand–Tsetlin basis of L(λ) are parameterised by the patterns Λ

defined in the Introduction. They are found by the formula

(3·3) ξΛ =
−→∏

k=2,...,n

(
z
λk 1−λk−1 1

k1 . . . z
λk k−1−λk−1 k−1

k k−1

)
ξ.

Represent each pattern Λ associated with λ as the sequence of its rows:

Λ = (λ̄n−1, . . . , λ̄1), λ̄k = (λk1, . . . , λkk),
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and consider the lexicographical ordering � on the sequences by using the ordering on
the highest weights introduced above. Recall the vectors πΛ defined in Theorem A. We
now obtain another proof of this theorem.

Proposition 3.2. For each pattern Λ associated with λ, in the module L(λ) we have

πΛ =
∑
Λ′<Λ

cΛ,Λ′ ξΛ′

for some constants cΛ,Λ′ , and cΛ,Λ 6= 0. In particular, πΛ is a basis of L(λ).

Proof. Due to the inductive structure of the vectors (3·3), the proposition follows by a
repeated application of Lemma 3.1. �

3.1. Monomials in simple root vectors. For any g, there is a way, that also involves
branching, to produce a basis of V (λ) by applying iterated negative simple root vectors
to vλ, see [11] and also [4, Sec. 11] for a connection with the FFLV-method. In type A, the
construction is most transparent [10], [11, Sec. 5&10].

Set fk = Ek+1 k. The subspace L(λ)+ is the linear span of vectors pfan−1

n−1 . . . fa11 vλ, where
an−1 > an−2 > . . . > a1. Set a0 = 0. By the weight considerations,

ξµ = pf
an−1

n−1 . . . fa11 vλ with ak − ak−1 = λk − µk,

up to a non-zero scalar. In view of the equality

[fn−1, [fn−2, . . . , [fk+1, fk] . . . ]] = Enk,

we can conclude directly, without weight arguments, that

pf
an−1

n−1 . . . fa11 vλ = pE
an−1−an−2

nn−1 . . . Ea1
n 1vλ .

A basis of L(λ) is obtained inductively, omitting extremal projectors, so that the basis
vectors have the form

f(Λ) = f
an−1,1

1 f
an−2,2

2 f
an−2,1

1 . . . f
a1,n−1

n−1 . . . f
a1,1
1 vλ

and are naturally parameterised by the Gelfand–Tsetlin patterns, see [11, Corollary 5]. In
the notation of (0·3),

(3·4) ak,j =

j∑
i=1

(λn−k+1 i − λn−k i).

Let m(Λ) be the leading term of f(Λ) in the monomial order used in Section 1.4. Then,
m(Λ)vλ = πΛ. Hence

f(Λ) ∈ πΛ + 〈mvλ | m < m(Λ)〉C = cΛ,ΛξΛ + 〈mvλ | m < m(Λ)〉C
with a non-zero cΛ,Λ ∈ C. Therefore, the transition matrices between all three bases are
triangular.
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Remark 3.3. Let � be the lexicographical order on ZN . Choose the enumeration of the
basis vectors f(Λ) is such a way that the corresponding sequences

ā = ā(Λ) = (an−1,1, an−2,2, an−2,1 . . . , a1,1),

see (3·4), are decreasing. Then the transition matrix between {f(Λ)} and the canonical
basis of L(λ) is upper triangular and unipotent by [11, Prop. 10.3]. Refining the above
considerations, one can show that

cΛ,ΛξΛ ∈ f(Λ) + 〈f(Λ′) | ā(Λ′) � ā〉C .

Therefore also the transition matrix between the canonical and the Gelfand–Tsetlin bases
is triangular. We will give a different proof of this fact below.

3.2. The PBW-parameterisation of the canonical basis. The bases of Littelmann [11]
arise as parameterisations of the canonical basis for V (λ) constructed by Lusztig [12, 13].
A different approach to this problem leads to PBW-type bases.

Let ω0 = si1 . . . siN be a reduced decomposition of the longest element ω0 ∈ W (g, h) of
the Weyl group. Define the sequence of positive roots β1, . . . , βN by βk = si1 . . . sik−1

(αik),
where αr is the rth simple root. Then βt 6= βk for k 6= t, see e.g. [4, Sec. 12]. Let fk be the
negative root vector corresponding to βk. Make use of the right opposite lexicographical
order on the monomials fa11 . . . faNN , which means that fa11 . . . faNN < f

a′1
1 . . . f

a′N
N if and only

if there is k such that 1 6 k 6 N and

ak > a′k, ar = a′r for r > k.

Use the same sequence of vectors for the elements of U(n−). Then the elements of the
canonical basis for V (λ) are in bijection with Es(λ). Moreover, if the element B(m)vλ of
the canonical basis corresponds to m ∈ Es(λ), then

(3·5) B(m)vλ ∈ mvλ + 〈m̃vλ | m̃ < m〉C ,

see e.g. [4, Sec. 12]. Note that we have omitted the “hight weighted function Ψ” of [4] on
the monomials, because it becomes redundant once one fixes a finite-dimensional module
V (λ).

Example 3.4. Let g be of type An−1. Choose the decomposition ω0 = s1s2s1 . . . sn−1 . . . s2s1.
Then

f1 . . . fN = E2 1E3 1E3 2 . . . En 1En 2 . . . Enn−1.

The right opposite lexicographical order satisfies the assumptions of Section 1.2 at each
step of the reductions along the Gelfand–Tsetlin chain of subalgebras. Therefore, we get
the basis of Theorem A, which is also the basis obtained in [18].

Corollary 3.5. For each dominant λ, the transition matrix between the canonical and the Gelfand–
Tsetlin bases of L(λ) is triangular.
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Proof. If we use the right opposite lexicographical order as above, then (1·5) holds for
g0 = gln−1. In view of this and (3·5), we can conclude that cΛ,ΛξΛ and B(m)vλ, where
m = m(Λ) is given by Λ as in Theorem A, have the same leading term, namely, mvλ. �

Remark 3.6. In the case n = 3 the canonical basis is monomial [12, Example 3.4] so that
this particular case of Corollary 3.5 follows by a simple calculation with the use of the
Gelfand–Tsetlin formulas.

Outside type A, these PBW-type bases become less transparent, see e.g. [18].

Example 3.7. Let g be of type Cn. Choose the decomposition

ω0 = snsn−1snsn−1 . . . s1s2 . . . sn−1snsn−1 . . . s2s1 .

Then fk ∈ sp2n−2 for k 6 N − 2n+ 1 and

fN−2n+2 . . . fN = F2n 2 . . . F2nnF2n 1F2nn+1 . . . F2n 2n−1 .

It is not difficult to see that such a choice produces a branching semigroup related to
sp2n ↓ sp2n−2 and that this semigroup is the same as in Section 2.2.

4. A GELFAND–TSETLIN-TYPE BASIS FOR REPRESENTATIONS OF sp2n

We now aim to prove an analogue of Proposition 3.2 for the symplectic Lie algebra sp2n.
The vectors θΛ defined in Theorem B turn out to be related to a certain modification of the
basis of [14]. In this section we will rely on the exposition in [16, Ch. 9] to produce this
modification.

Given a type C pattern Λ associated with λ, as defined in the Introduction, set

(4·1) lk i = λk i − i−
1

2
, l′k i = λ′k i − i+

1

2
.

Theorem 4.1. The sp2n-module V (λ) admits a basis ζΛ parameterised by the type C patterns Λ

associated with λ such that the action of generators of sp2n in the basis is given by the formulas

Fkk ζΛ =

(
k∑
i=1

λk i +
k−1∑
i=1

λk−1 i − 2
k∑
i=1

λ′k i

)
ζΛ,

Fk,−k ζΛ =
k∑
i=1

Ak i ζΛ−δ′k i
, F−k,k ζΛ =

k∑
i=1

Bk i ζΛ+δ′k i
,

Fk−1,−k ζΛ = −
k−1∑
i=1

Ck i ζΛ+δk−1 i
−

k∑
i=1

k−1∑
j,m=1

Dk ijm ζΛ−δ′k i−δk−1 j−δ
′
k−1m

,
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where

Ak i =
k∏

a=1, a 6=i

1

l′ka − l′k i
,

Bk i = 2Ak i
(
2 l′k i + 1

) k∏
a=1

(
lka − l′k i

) k−1∏
a=1

(
lk−1 a − l′k i

)
,

Ck i =
1

2 lk−1 i + 1

k−1∏
a=1, a 6=i

1(
lk−1 i − lk−1 a

)(
lk−1 i + lk−1 a + 1

) ,
and

Dk ijm = Ak iAk−1mCk j

k∏
a=1, a6=i

(
l2k−1 j − l′2ka

) k−1∏
a=1, a 6=m

(
l2k−1 j − l′2k−1 a

)
.

The arrays Λ±δk i and Λ±δ′k i are obtained from Λ by replacing λk i and λ′k i by λk i±1 and λ′k i±1

respectively. The vector ζΛ is considered to be zero if the array Λ is not a pattern.

Proof. The proof is not essentially different from that of [16, Theorem 9.6.2], so we only
point out some key steps and alternative choices made in the arguments.

Suppose that µ = (µ1, . . . , µn−1) is an sp2n−2-highest weight. The multiplicity space
V (λ)+

µ is nonzero if and only if the components of λ and µ satisfy the inequalities

(4·2) λi > µi+1, i = 1, . . . , n− 2 and µi > λi+1, i = 1, . . . , n− 1.

When it is nonzero, the vector space V (λ)+
µ carries an irreducible representation of the

twisted Yangian Y(sp2). By [16, Theorem 9.4.11], this representation is isomorphic to the
tensor product,

(4·3) V (λ)+
µ
∼= L(α1, β1)⊗ . . .⊗ L(αn, βn),

where
αi = min{λi−1, µi−1} − i+

1

2
, βi = max{λi, µi} − i+

1

2
,

assuming that λ0 = µ0 = 0 and max{λn, µn} is understood as being equal to λn. Each
factor L(αi, βi) is the highest weight gl2-module which is extended to the evaluation module
over the Yangian Y(gl2). The coproduct on the Yangian allows one to equip the tensor
product in (4·3) with a Y(gl2)-module structure. This module is then restricted to the
subalgebra Y(sp2) ⊂ Y(gl2).

The required modification of the construction relies on [16, Corollary 4.3.5] which im-
plies an alternative isomorphism

(4·4) V (λ)+
µ
∼= L(−β1,−α1)⊗ . . .⊗ L(−βn,−αn).

Although the tensor products in (4·3) and (4·4) are isomorphic as Y(sp2)-modules, they
differ as Y(gl2)-modules. As we shall see below, the use of the alternative isomorphism
leads to a different basis of the multiplicity space V (λ)+

µ .
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The basis vectors of V (λ)+
µ will be constructed with the use of the Mickelsson–Zhelobenko

algebra Z(sp2n, sp2n−2). The lowering operators are elements of Z(sp2n, sp2n−2) defined by

(4·5) zi,−n = pFi,−n(fi − fi−1) . . . (fi − f−n+1), i = −n+ 1, . . . , n− 1,

where p is the extremal projector for sp2n−2, and we set

fi = Fii − i, f−i = −Fii + i,

for all i = 1, . . . , n. One more lowering operator zn,−n ∈ Z(sp2n, sp2n−2) is defined by

zn,−n =
∑

n>i1>···>is>−n

Fni1Fi1i2 · · ·Fis,−n (fn − fj1) · · · (fn − fjk),

where s = 0, 1, . . . and {j1, . . . , jk} is the complement to the subset {i1, . . . , is} in the
set {−n + 1, . . . , n − 1}. We will also need an interpolation polynomial Zn,−n(u) with
coefficients in the Mickelsson–Zhelobenko algebra given by

(4·6) Zn,−n(u) = Fn,−n

n−1∏
i=−n+1

(u+ gi)−
n−1∑

i=−n+1

znizi,−n

n−1∏
j=−n+1, j 6=i

u+ gj
gi − gj

,

where gi = fi + 1/2 for all i and we set zni = (−1)n−i z−i,−n. This polynomial is even in u
and has the properties

(4·7) Zn,−n(−gi) = znizi,−n, i = −n+ 1, . . . , n− 1,

and

(4·8) Zn,−n(−gn) = zn,−n.

Recall that the dimension of the multiplicity space V (λ)+
µ equals the number of n-tuples

of integers ν = (ν1, . . . , νn) satisfying the betweenness conditions (2·2). Let us set

(4·9) γi = νi − i+
1

2
, i = 1, . . . , n.

The highest vector of the Y(sp2)-module V (λ)+
µ is given by the formula (it coincides with

the vector in [16, (9.69)] up to a sign):

(4·10) ξµ =
n−1∏
i=1

(
z

max{λi,µi}−λi
n,−i z

max{λi,µi}−µi
−i,−n

)
ξ,

so that following the proof of [16, Theorem 9.5.1] and using the isomorphism (4·4) instead
of (4·3), we find that the vectors

(4·11)
n∏
i=1

Zn,−n(γi + 1) . . . Zn,−n(αi − 1)Zn,−n(αi) ξµ
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with ν satisfying the betweenness conditions form a basis of V (λ)+
µ . By repeating the

argument of that proof, we can conclude that the vectors

(4·12) ξν =
n−1∏
i=1

z
µi−νi+1

n,−i z
λi−νi+1

−i,−n · Zn,−n(γ1 + 1) . . . Zn,−n(α1) ξ

parameterised by the n-tuples ν satisfying the betweenness conditions form a basis of the
multiplicity space V (λ)+

µ .
Taking into account the decomposition (0·1) and applying the same argument to the

subalgebras of the chain (2·3), we obtain that the vectors

ξΛ =
−→∏

k=1,...,n

( k−1∏
i=1

z
λk−1 i−λ

′
k i+1

k,−i z
λk i−λ

′
k i+1

−i,−k · Zk,−k(λ′k 1 + 1/2) . . . Zk,−k(−1/2)
)
ξ

parameterised by all patterns Λ associated with λ form a basis of the representation V (λ)

of sp2n. The same calculations as in the proof of [16, Theorem 9.6.2] allow one to get the
formulas for the action of the generators of the Lie algebra sp2n in the basis ξΛ and then
write them in terms of the normalised basis vectors

ζΛ =
n∏
k=2

∏
16i<j6k

1

(−l′k i − l′k j − 1)!
ξΛ

thus completing the proof. �

Remark 4.2. When written for the basis vectors ξΛ, the matrix elements of the generators
of sp2n provided by Theorem 4.1 and those of [16, Theorem 9.6.2] exhibit the following
symmetry: the formal replacements Λ 7→ −Λ together with lk i 7→ −lk i and l′k i 7→ −l′k i
transform the matrix elements from one case to the other.

5. CONNECTION BETWEEN THE MONOMIAL AND GELFAND–TSETLIN-TYPE BASES

We will demonstrate that the transition matrix between the basis θΛ of the sp2n-module
V (λ) provided by Theorem B and the basis ζΛ of Theorem 4.1 is triangular.

Using the notation from the previous section, for each n-tuple ν satisfying the between-
ness conditions, introduce the vector ην ∈ V (λ)+

µ by

(5·1) ην =
n−1∏
i=1

z
µi−νi+1

n,−i z
λi−νi+1

−i,−n F −ν1n,−n ξ.

By a result of Zhelobenko [19, Theorem 6.1], the vectors ην form a basis of V (λ)+
µ . This

fact will also follow from a relationship between the vectors ξν and ην as described in the
next lemma. We will consider the lexicographical orderings� on the set of n-tuples ν and
on the set of (n− 1)-tuples µ.
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Lemma 5.1. For any ν we have the relation

ην =
∑
ν′<ν

cν,ν′ ξν′

for some constants cν,ν′ , and cν,ν 6= 0. In particular, the vectors ην form a basis of V (λ)+
µ .

Proof. Since Fn,−n commutes with the lowering operators zn j , the vector (5·1) can be writ-
ten as ην = F −ν1n,−nξν0 , where ν0 is the n-tuple obtained from ν by replacing ν1 with 0. On
the other hand, by the formulas of Theorem 4.1 for any ν we have

Fn,−n ξν =
n∑
i=1

n∏
a=1, a 6=i

1

γ2
i − γ2

a

ξν−δi .

A repeated application of this formula allows us to write F −ν1n,−nξν0 as a linear combination
of the basis vectors ξν which clearly has the required form. �

Lemma 5.1 implies that the vectors

(5·2) ηΛ =
−→∏

k=1,...,n

(
F
−λ′k 1
k,−k

k−1∏
i=1

z
λk−1 i−λ

′
k i+1

k,−i z
λk i−λ

′
k i+1

−i,−k

)
ξ,

parameterised by all type C patterns Λ associated with λ form a basis of the representation
V (λ).

Since the weight µ will now be varied, we will denote the vector (5·1) by ηνµ. The
following lemma is essentially a particular case of [19, Theorem 7] or [20, Lemma 2].

Lemma 5.2. For any given pair (ν, µ) satisfying the betweenness conditions, in the module V (λ)

we have

(5·3) F −ν1n,−n

n−1∏
i=1

F
µi−νi+1

n,−i F
λi−νi+1

−i,−n ξ = c ηνµ +
∑
ν′, µ′

u(ν ′, µ′) ην′µ′

for a nonzero constant c and some elements u(ν ′, µ′) ∈ U(n−0 ), where the sum is taken over the
pairs (ν ′, µ′) satisfying the betweenness conditions, and u(ν ′, µ′) = 0 unless µ′ � µ, or µ′ = µ

and ν ′ � ν.

Proof. Write the product on the left hand side in the order

F
µn−1−νn
n,−n+1 . . . F µ1−ν2

n,−1 F −ν1n,−n F
λ1−ν2
−1,−n . . . F

λn−1−νn
−n+1,−n ξ.

Taking into account that Fn,−k = Fk,−n for positive values of k, start from the rightmost
generator and proceed to the left by using the inversion formula [16, Lemma 9.2.2] to re-
place Fi,−n with i = −n+ 1, . . . , n− 1 by the expression:

Fi,−n = pFi,−n +
∑

i>i1>···>is>−n

Fi i1Fi1i2 . . . Fis−1is pFis,−n
1

(fis − fi)(fis − fi1) . . . (fis − fis−1)
,
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summed over s = 1, 2, . . . . Apply relation (4·5) to write the right hand side of the inver-
sion formula in terms of the lowering operators zk,−n. We will use the following property
of these operators: zi,−n and zj,−n commute for i + j 6= 0; see [16, Proposition 9.2.5]. Let
ñ−0 denote the subalgebra of n−0 spanned by the elements Fj i with 1 6 i < j 6 n− 1. The
same argument as in the proof of Lemma 3.1 shows that

F −ν1n,−n F
λ1−ν2
−1,−n . . . F

λn−1−νn
−n+1,−n ξ = d ηνν̃ +

∑
σ�ν

u(σ) ησν̃

for a nonzero constant d and some elements u(σ) ∈ U(ñ−0 ), where ν̃ = (ν2, . . . , νn). Now
we will be applying the inversion formula for positive values of i and note that each
term with is < 0 in the sum on the right hand side contains a generator Fik ik+1

with
ik > 0 > ik+1. However, such a generator commutes with all elements Fi,−n for i > 0.
Therefore, all these terms with is < 0 will only contribute to the sum on the right hand
side of the expansion (5·3) within the summands of the form u(ν ′, µ′) ην′µ′ with µ′ � µ.

On the other hand, for any element u ∈ U(ñ−0 ) we have the relation

Fi,−nu = uFi,−n +
n−1∑
j=i+1

Fj,−nuj

for certain elements uj ∈ U(ñ−0 ). Hence, considering the terms in the inversion formula
with the property is > 0, we may conclude that nonzero summands on the right hand
side of (5·3) of the form u(ν ′, µ) ην′µ must have the property ν ′ < ν and u(ν, µ) is a nonzero
constant. �

Consider the vectors ξΛ ∈ V (λ) introduced in Section 4. They are parameterised by the
type C patterns Λ defined in the Introduction. Represent each pattern Λ associated with λ
as the sequence of the rows:

Λ = (λ̄n−1, λ̄
′
n, λ̄n−2, λ̄

′
n−1, . . . , λ̄

′
1),

where we set

λ̄k = (λk1, . . . , λkk) and λ̄′k = (λ′k1, . . . , λ
′
kk).

Introduce the lexicographical ordering� on the sequences Λ by using the lexicographical
orderings on the vectors λ̄k and λ̄′k. Recall the vectors θΛ defined in Theorem B. We can
now obtain another proof of the theorem.

Proposition 5.3. For each type C pattern Λ associated with λ, in the module V (λ) we have

θΛ =
∑
Λ′<Λ

cΛ,Λ′ ξΛ′

for some constants cΛ,Λ′ , and cΛ,Λ 6= 0. In particular, θΛ is a basis of V (λ).
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Proof. We will use an induction on n. Consider the part of the product defining the vector
θΛ which corresponds to the value k = n. By applying Lemma 5.2 and using the induction
hypothesis, we can write θΛ as a linear combination of the basis vectors ηM defined in (5·2)
so that it contains the vector ηΛ with a nonzero coefficient, while the remaining vectors
occurring in the linear combination have the property M � Λ. It remains to expand the
vectors ηM as linear combinations of basis vectors ξΛ′ by using Lemma 5.1 which yields
the expansion of θΛ with the required properties. �

Remark 5.4. The inversion formula can be used also for rewriting the basis of Proposi-
tion 2.10 in terms of the lowering operators. Therefore the subspace V (λ)+ has a basis

{F b
2n 1z

bn+ιnan
2nn z

bn+(1−ιn)an
n 1 . . . zb2+ι2a2

2n 2 z
b2+(1−ι2)a2
2 1 vλ | a2, . . . an, b, b2, . . . bn satisfy (2·6)− (2·9)},

where ιk ∈ {0, 1}.
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