Cowan’s Identity

My website would not be complete without special advertisement of my 2007
research on convex hulls. There are some original identities arising in that re-
search — and I regard them as potentially-useful contributions to the mathemat-
ical literature. One identity, in particular, has been named after me (as Cowan’s
Identity in the 2008 book by Schneider and Weil [1] and Cowan’s Formula in [2]).

Whether the identity /formula is important remains to be seen, but it is quite
stunning and deserving better publicity than has occurred to date (with my
almost—total neglect of it).

I describe, in Theorem 1 below, a simple planar version of the identity. Some
pictures to illustrate the identity follow. Later, in Theorem 2, the identity is
discussed in d dimensions.

The identity in R?

Theorem 1: For n > 3, place n points Py, Ps, ..., P, in the plane, positioned
so that H,, the convex hull of the points, has dimension 2. In other words, we
require that there is no line in R? which contains all n points. Nor can it be that

all points coincide. Now, add a point P at any position in H,,, the interior of H,,.
Define ¢;(P), for 1 < j < n, as the number of sub-collections of j points from
{P, Py, ...P,} whose convex-hull contains the point P. Then

U(P) = c1(P) — ea(P) + ...(—1)" Len(P) = 1 forall P€ H,. O

Example 1: See Figure 1, which has three cases (a), (b) and (c), each with
n = 6 and the same six points Pj, P, ....P;. Consider cases (a) and (b), which
show the six points in black. All 2-hulls are shown, these being line-segments
joining pairs of points. The reference point P (coloured red) is also shown. In
case (b), P lies on two of the 2-hulls. Case (c) also shows the six points and the
2-hulls, but it has the additional feature that P is positioned on one of the P;
(see the black dot with a red centre). Theorem 1 allows this feature. .

() (b) (c)
T=0-0+8-12+6—-1=1  T=0-2+10-12+4+6-1=1 T=1-5+13-13+6-1=1

Figure 1: Here n = 6. As described in Example 1, points P, P, Ps, Py, P; and
Ps are in the same general position in all three drawings. W(P) = 1 as shown
under each case. So Theorem 1 holds in the three cases.



Theorem 1 holds even when the points Py, P, ..., P, are not all distinct. We
show an example where P; coincides with Fg.

Example 1 (continued): Let n = 7. The first six of the points are the black
dots of Figure 1(a). The seventh, Pr, coincides with Ps, which is the black point
furthest to the right of Figure 1(a). Clearly ¢1(P) = c2(P) = 0 and ¢; = 1. With
considerably more effort, if working with just a pencil and paper, the following
results emerge: c3(P) = 13; ¢4(P) = 26; ¢5(P) = 20; ¢s(P) = 7. Therefore
U(P)=1.

Example 2: One point (black with red centre) lies on P. The red arrows
indicate a multiplicity at the indicated black dot. Each 0f the six remaining black
dots accommodates one point. So we see that n = 12. The ¢;(P) counts and the
resulting value of W(P) are displayed below Figure 2. Thus, for this quite com-
plicated example (with large numbers involved in the calculation of W), Theorem
1 is validated.

U=1-16+118—-373+ 701 — 883 + 782 —494 +220-66+12—-1=1

Figure 2: Note here a few colinearities: of three points, and also one of four
points. Theorem 1 handles these complications. See Example 2.

These examples do not prove Theorem 1, of course. The proof can be found
in my paper [3]. That paper also contains the trivial one-dimensional case. We
now deal with the remaining situation: the d-dimensional case (with d > 3).



The identity in R? d > 3

Theorem 2: With n > d + 1, we place n points Py, Ps, ..., P, in R% d > 3,
positioned so that H,, the convex hull of the points, has dimension d. Add the

point P at any position in H,, the interior of H,,. Define ¢;(P), for 1 < j < n,
as before: the number of sub-collections of j points from {P;, P,,...P,} whose
convex-hull contains the point P. Then, there exists a set £ C R? of dimension
at most (d — 2), such that

U(P) = c1(P) — ea(P) + o~ 1) Yen(P) = (—1)?  forall Pe H \E O
(1)

Theorem 2 was proved in [3]-[4] and (by a more streamlined approach) in [1].

Remark 1: Formula (1) has been proved with a different exceptional set £,
namely “& is a set of d-dimensional Lebesgue measure zero” instead of “£ is a
set of dimension < (d — 2)”. Which version gives the stronger mathematical re-
sult? This question is now unimportant, because Kabluchko et al [2] have proved

formula (1) for &= 0: that is, for all positions of P € ](}n

I was very pleased to find the Euler-like alternating sum, to prove it for d < 2
and also prove it (albeit with a small exceptional set of P positions) when d > 3.
I am also pleased that others ([2], [5]) have removed the exceptional set and
extended the scope of the Identity.
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