![]() |
![]() |
![]() |
![]() |
|||||||||||||||||||||||||||||||||||||||
![]() |
![]() |
![]() |
||||||||||||||||||||||||||||||||||||||||
7. Cartesian coordinates in three dimensions
|
||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||
| ![]() |
We begin with two dimensions. We have the following picture illustrating how to construct the Cartesian form of a point Q in the XOY plane. ![]() Vectors i and j are vectors of length 1 in the directions OX and OY respectively. The vector ![]() We now extend this to three dimensions to show how to construct the Cartesian form of a point P. Define k to be a vector of length 1 in the direction of OZ. We now have the following picture. ![]() Draw a perpendicular PT from P to the OZ axis. ![]() In the rectangle OQPT,PQ and OT both have length z. The vector ![]()
This formula, which expresses The formula ![]() applies in all octants, as x, y and z run through all possible real values.
|
||||||||||||||||||||||||||||||||||||||||
Feedback |
|
© 2002-09 The University of Sydney. Last updated: 09 November 2009
ABN: 15 211 513 464. CRICOS number: 00026A. Phone: +61 2 9351 2222.
Authorised by: Head, School of Mathematics and Statistics.
Contact the University | Disclaimer | Privacy | Accessibility