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Abstract

Diffusion models are the state-of-the-art tools for various generative tasks. However,
estimating high-dimensional score functions makes them potentially suffer from the curse of
dimensionality (CoD). This underscores the importance of better understanding and exploit-
ing low-dimensional structure in the target distribution. In this work, we consider locality
structure, which describes sparse dependencies between model components. Under locality
structure, the score function is effectively low-dimensional, so that it can be estimated by a
localized neural network with significantly reduced sample complexity. This motivates the
localized diffusion model, where a localized score matching loss is used to train the score
function within a localized hypothesis space. We prove that such localization enables diffu-
sion models to circumvent CoD, at the price of additional localization error. Under realistic
sample size scaling, we show both theoretically and numerically that a moderate localization
radius can balance the statistical and localization error, leading to a better overall perfor-
mance. The localized structure also facilitates parallel training of diffusion models, making
it potentially more efficient for large-scale applications.

1 Introduction

Over the past decade, numerous neural network (NN)-based sampling algorithms have emerged
in the machine learning literature, demonstrating remarkable performance across various tasks.
These methods, often referred to as generative models, include approaches such as normalizing
flows [35], variational encoders [24], generative adversarial network [18], and diffusion models [37,
21, 38]. Among all generative models, diffusion model (DM), usually referring to the denoising
diffusion probabilistic model (DDPM) [21], is a state-of-the-art and widely used approach. It has
gained great popularity due to its capability in generating high quality samples, particularly in
tasks such as image synthesis [21, 14]. A series of recent studies [28, 9, 4, 32, 7, 43] theoretically
justify the approximation and generalization capabilities of DMs over a broad class of target
distributions. However, there remains limited understanding of its effectiveness in handling
high-dimensional distributions.

DMs are known to be expensive when it comes to training with high-dimensional data. The
training sample size needs to grow exponentially with the problem dimension [39, 32], known
as the curse of dimensionality (CoD) in the literature. Various attempts have been made to
avoid it by leveraging low-dimensional structures within the target distribution. The manifold
hypothesis [15] which assumes that the data lies on a low-dimensional manifold, is often envoked
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to postulate such structures. For such data, [32, 7, 40, 1] show that the sample complexity
of DMs depends on the dimension of the manifold rather than the ambient dimension, and
DMs can avoid the CoD with appropriate NN structure. There are also studies considering
Gaussian mixtures [36, 45, 17] to avoid the CoD. In both manifold hypothesis and the Gaussian
mixture models, although the ambient space is high dimension, there is a low-dimensional latent
structure that effectively characterizes the target distribution.

While these concepts of low effective dimension can cover many applications, there are still
important cases left open. One large class of high-dimensional distributions are those with
locality structure [5, 41, 16, 13]. We say a distribution has locality structure if each model
component only has strong conditional dependence on a sparse selection of the other model
components. An illustrative example is the Ginzburg-Landau model from statistical physics
[27], where d particles in one-dimensional configurations follow the distribution

p(x1, . . . , xd) =
1

Z
exp

 d∑
j=1

V (xj) +

d−1∑
j=1

W (xj , xj+1)

 .

In this model, each particle, denoted by xj , interacts directly only with its neighbors xj±1.
Such sparse dependence structure arises naturally in spatial models, and has been successfully
applied in various fields such as spatial statistics [5], data assimilation [34], quantum mechanics
[25] and sampling [41]. We refer to [13] for a detailed review on the locality structure.

An important property of distributions with locality structure, or localized distributions,
is that their score functions are effectively low-dimensional [41, 13]. Due to the conditional
independence, the score component sj(x) = ∇j log p(x) depends only on xNj , where xNj is
the component conditionally dependent on xj . If the conditional dependencies are sparse, the
dimension of xNj is much smaller than the ambient dimension d, so that the score function can
be regarded as a collection of low-dimensional functions {sj}j∈[d]. This suggests that learning
the score functions of localized distributions does not suffer from the CoD.

Motivated by this, we propose the localized diffusion model (LDM), which embeds the local-
ity structure into the hypothesis space of the score function, reducing a high dimensional score
matching problem to a low dimensional one. With small effective dimension, the statistical
error of score estimation is significantly reduced. On the other hand, localizing the hypothesis
space introduces additional localization error. By a complete approximation and generalization
analysis, we show that by adjusting the localization radius, one can balance the tradeoff be-
tween the statistical error and the localization error to achieve smaller overall error. This can
be interpreted as a tradeoff between variance and bias. Such tradeoff is validated by numerical
experiments on high-dimensional time series data. Finally, we find that LDM can be inter-
preted as a collection of diffusion models on low-dimensional marginals. That is, we construct
the samplers by combining local samplers for the marginals of the localized distributions. This
allows LDM to be trained parallelly, which is practically important for large-scale applications.

The paper is organized as follows. In Section 2, we review diffusion models and the local-
ity structure, and show that the locality structure is approximately preserved in the forward
diffusion process. In Section 3, we introduce the localized diffusion model and analyze its ap-
proximation and statistical error. In Section 4, we present numerical experiments to validate
our theoretical results.

1.1 Related Work

Analysis of Diffusion Models Since the introduction of DMs [37, 21, 38], there has been a
surge of interest in understanding their theoretical properties. Our work is built on two main
lines of research: the convergence of DMs and the statistical analysis of DMs. A comprehensive
review of all related work is beyond the scope of this paper; we refer to [8, 17] for an in-depth
overview.
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The convergence of DMs considers error bounds of the sampled distribution given the learned
score function. Early work [28] provides a TV guarantee by assuming a log-Sobolev inequality.
Later, by using Girsanov theorem, this condition is relaxed to bounded moment conditions [9, 6].
A growing body of work is trying to further relax assumptions and improve error bounds. For
instance, [4] proves a linear-in-dimension bound under the KL divergence, [10] uses a relative
score approach and derives bounds without early stopping. [33] considers the manifold data,
and improves the bound of the discretization error to scale linearly with the manifold dimension.

The statistical analysis of DMs essentially studies the sample complexity of estimating the
score function. [32, 43] prove that the diffusion model reaches the minimax rate for distribution
estimation. To avoid the CoD, [32, 7] considers linear subspace data, and later [40, 1] extends
it to general manifold data. Recently, [44] relaxes the manifold assumption, and improves the
ambient dimension dependence in the generalization bound. Other types of low-dimensional
structures are also considered. [36] considers certain Gaussian mixtures, and shows that the
sample complexity does not depend exponentially on the dimension. [17] further extends it to
general Gaussian mixtures with edited diffusion models.

We mention that a recent work [30] considers similar settings as ours. They apply the diffu-
sion models for high-dimensional graphical models. Inspired by variational inference denoising
algorithms, they design a residual network to efficiently approximate the score function, and
prove that its sample complexity does not suffer from CoD. However, their result depends on an
explicit solution of the denoising algorithms, and only applies to Ising model-type distributions.
The method we propose in this paper applies to general high-dimensional graphical models.

Localized Sampler In recent years, there has been a fast growing interest in sampling meth-
ods that leverage locality structures [46, 31, 41, 20]. These localized samplers follow the general
strategy to build samplers by combining local samplers for the marginals. [31] propose to apply
the localization technique in Markov chain Monte Carlo (MCMC) and introduces a localized
Metropolis-within-Gibbs sampler. [41] extends this idea and develops the MALA-within-Gibbs
sampler, which is proven to admit a dimension independent convergence rate. Beyond MCMC,
[46] proposes Message Passing Stein Variational Gradient Descent. It finds the descent direction
coordinate-wisely, and reduces the degeneracy issue of kernel methods in high dimensions. [20]
proposes a localized version of the Schrödinger Bridge (SB) sampler [19], which replaces a sin-
gle high-dimensional SB problem by d low-dimensional SB problems, avoiding the exponential
dependence of the sample complexity on the dimension.

1.2 Notations

• Sets. Denote [n] = {1, 2, . . . , n}, and the cardinality of a set A as |A|. Given x ∈ Rn and
A ⊂ [n], denote xA as the subvector of x with components’ indices from A.

• Norms. For a vector x ∈ Rd, denote ∥x∥ as its ℓ2-norm. For a matrix A ∈ Rm×n, denote

∥A∥ = supx ̸=0
∥Ax∥
∥x∥ as the 2-matrix norm. For a probability distribution p and a function

f , denote ∥f∥L2(p) =
(∫

f2(x)p(x)dx
)1/2

as the weighted L2-norm.

• Probability. Denote Law(X) as the distribution of a random variable X. Denote the co-
varaince matrix of X,Y as Covp(X,Y ) := Ep[(X − Ep[X]) (Y − Ep[Y ])T]. Denote N(µ,Σ)
as the Gaussian distribution with mean µ and covariance Σ. Denote X ⊥⊥ Y | Z if X is
independent of Y given Z; i.e. P(X,Y |Z) = P(X|Z)P(Y |Z).
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2 Diffusion Models and Localized Distributions

2.1 Diffusion Models

Diffusion models operate by simulating a process that gradually transforms a simple initial
distribution, often Gaussian noise, into a complex target distribution, which represents the
data of interest. The core formulation involves two processes: a forward Ornstein–Uhlenbeck
(OU) diffusion process which evolves data samples from the data distribution p0 to noisy samples
drawn from a Gaussian distribution, and a reverse diffusion process that learns to progressively
denoise the samples and effectively reconstruct the original data distribution.

Consider a forward OU process (Xt)t∈[0,T ] that is intialized with the target distribution p0
and follows the process, i.e.,

dXt = −Xtdt+
√
2dWt, X0 ∼ p0. (2.1)

Denote its reverse process as (Yt)t∈[0,T ] s.t. Yt = XT−t. Under mild conditions, Yt follows the
reverse SDE [38]

dYt = (Yt + 2∇ log pT−t(Yt)) dt+
√
2dWt, Y0 ∼ pT , (2.2)

where we denote pt = Law(Xt). The target distribution p0 can then be sampled by first sampling
Y0 ∼ pT and then evolving Yt according to (2.2) to obtain a sample YT ∼ p0.

To implement the above scheme, several approximations are needed:

1. Score estimation. The score function s(x, t) := ∇ log pt(x) is not accessible, and needs to
be estimated from the data via the denoising score matching scheme [42, 37, 21]

ŝ = argmin
sθ

L(sθ),

L(sθ) :=
∫ T

0
Ex0∼p0

[
Ext∼pt|0(xt|x0)

[∥∥sθ(xt, t)−∇xt log pt|0(xt|x0)
∥∥2]] dt. (2.3)

In the sampling process, the true score ∇ log pT−t(Yt) in (2.2) is approximated by the
estimated score ŝ(Yt, T − t).

2. Approximation of pT . The initial distribution pT in the reverse process is intractable. But
since the OU process converges exponentially to p∞ = N(0, I), we can approximate pT by
N(0, I) in (2.2), i.e., Y0 is drawn from N(0, I).

3. Early stopping. The reverse process is usually stopped at t = T − t for some small t > 0
to avoid potential blow up of the score function st as t → 0. The early stopped samples
satisfy YT−t ∼ pt, which should be close to p0 when t is small.

4. Time discretization. The Euler-Maruyama scheme is used to discretize (2.2). Pick time
steps 0 = t0 < t1 < · · · < tN = T − t, and evolve n = 0, 1, . . . , N − 1 by

Ytn+1 = Ytn + (Ytn + 2ŝ(Ytn , T − tn))∆tn +
√

2∆tnξn, (2.4)

where ∆tn = tn+1− tn and ξn ∼ N(0, I). Design of the time steps (the schedule) is crucial
for the empirical performance of the sampling process.

Note the OU process admits an explicit transition kernel

pt|0(xt|x0) = N(xt;αtx0, σ
2
t I), αt := e−t, σt :=

√
1− e−2t. (2.5)

So that ∇xt log pt|0(xt|x0) = −σ−2
t (xt − αtx0), and pt|0(xt|x0) can be realized as

xt = αtx0 + σtϵt, ϵt ∼ N(0, I).
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Therefore, the denoising score matching loss in (2.3) can be written as

L(sθ) =
∫ T

t
Ex0∼p0Eϵt∼N(0,I)

[∥∥sθ(αtx0 + σtϵt, t) + σ−1
t ϵt

∥∥2] dt, (2.6)

where we involved the early stopping truncation. The above loss provides a convenient form for
implementation [22].

2.2 Locality Structure

We will use the undirected graphical model [29, 26], also known as Markov random field, to
describe the locality structure. In this model, the conditional dependencies of a collection of
random variables are encoded in the underlying dependency graph. So that the sparsity of the
graph can be used to characterize the locality structure in the joint distribution of these random
variables. We will define the localized and approximately localized distributions based on the
dependency graph.

2.2.1 Sparse Graphical Models

Following [13], consider an undirected graph G = (V,E) and an associated random variable

X = (Xi)i∈V ∈ Rd, Xi ∈ Rdi , d =
∑
i∈V

di. (2.7)

Here we assume that the dimension of each component di is small, but the total dimension d is
large. We say X has dependency graph G, if for any nonadjacent vertices i, j ∈ V , Xi, Xj are
conditionally independent given the rest of the components (Xk)k ̸=i,j , i.e.,

Xi ⊥⊥ Xj | (Xk)k ̸=i,j . (2.8)

X is called a sparse graphical model if the dependency graph G is sparse, which essentially
encodes the sparse local dependencies in X. The following equivalent characterization [41] of
the sparse graphical models will be crucial. Let p = Law(X). If p(x) is twice differentiable, then
(2.8) equivalent to

∀ nonadjacent i, j ∈ V ⇒ ∇2
ij log p(x) = 0. (2.9)

Let b = |V |, and attach each vertex in V with a unique index j ∈ [b]. Denote

Nj := {i ∈ V : (i, j) ∈ E} (2.10)

as the neighboring vertices of j. For simplicity, we require that E includes all the self-loops in
G; i.e. j ∈ Nj . We further denote the extended neighborhood of j as

N r
j = {i ∈ V : dG(i, j) ≤ r}, (2.11)

where dG(i, j) is the graph path distance between i, j ∈ V , i.e.,

dG(i, j) = min{n ≥ 0 : ∃ path of length n from i to j}. (2.12)

2.2.2 Localized Distributions

Now we define localized and approximately localized distributions. The former is precisely the
sparse graphical models, and the latter is a relaxation based on (2.9), which allows exponentially
small long-range dependencies.
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Definition 2.1. A distribution p is called localized w.r.t. an undirected graph G if it satisfies
(2.8). A distribution p is called approximately localized w.r.t. G, if there exists dimensional
independent constants cp, Cp > 0 such that∥∥∇2

ij log p
∥∥
∞ ≤ Cp exp (−cpdG(i, j)) . (2.13)

Here ∥·∥∞ denotes the L∞-norm, and dG(i, j) is the graph distance (2.12).

For localized distributions, consider the j-th component of its score function

sj(x) = ∇j log p(x). (2.14)

Note that it is only a function of xNj , since by (2.9), for any i /∈ Nj ,

∇isj(x) = ∇2
ij log p(x) = 0.

For sparse graph G, |Nj | ≪ |V |, so that sj is essentially a low-dimensional function, which
implies that estimation of sj does not suffer from the curse of dimensionality. This motivates us
to leverage the locality structure in the hypothesis space of the score function, and to localize
the score matching procedure. The detailed methods will be discussed in Section 3.

However, the low-dimensionality in the score functions only holds for localized distributions.
For approximately localized distributions, the score functions can only be approximated by
low-dimensional functions. To improve the approximation accuracy, we can use the expanded
neighborhood (2.11) for the approximate scores, i.e.,

sj(x) ≈ ŝθ,j(xN r
j
).

Here r is the radius of the neighborhood, and can be tuned to balance the approximation accu-
racy and the sample complexity. Note by (2.13), the approximation error decays exponentially
with the radius r, while the dimension of ŝθ,j only grows polynomially with r. Section 3 will
provide a detailed analysis of the approximation error and the tradeoff in the choices of r.

2.3 Locality Structure in Diffusion Models

We show in this section that the locality structure is preserved in the forward OU process, which
lays the foundation for the localized score matching in diffusion models.

The explicit transition kernel (2.5) of the OU process implies that pt has an explicit density

pt(xt) =

∫
N(xt;αtx0, σ

2
t I)p0(x0)dx0.

pt can be viewed as an interpolation between p0 and p∞ = N(0, I). Suppose p0 is a localized
distribution w.r.t. an undirected graph G. It is obvious that p∞ is localized, but their inter-
polation pt may not remain strictly localized. However, pt is still approximately localized, as
proved in the following theorem.

Theorem 2.1. Suppose p0 is localized w.r.t. an undirected graph G. Assume additionally that
p0 is log-concave and smooth, i.e., ∃0 < m ≤ M < ∞ s.t. mI ⪯ −∇2 log p0(x) ⪯ MI. Then
for any t ∈ (0, T ], pt is approximately localized w.r.t. G. Specifically,

∥∥∇2
ij log pt

∥∥
∞ ≤ α2

t

σ2
t

(
mσ2

t + α2
t

) (1− mσ2
t + α2

t

Mσ2
t + α2

t

)dG(i,j)

. (2.15)

Here αt = e−t and σt =
√
1− e−2t (cf. (2.5)), and dG(i, j) is the graph distance (2.12).
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The proof can be found in Appendix A.1. The first step is to show that

∇2
ij log pt(xt) = α2

tσ
−4
t Covp0|t(x0|xt) (x0,i, x0,j) .

The bound then directly follows Proposition 2.2 below, which establishes the exponential decay
of correlations between xi, xj w.r.t. their graph distance dG(i, j) for localized distributions. This
is a ubiquitous property for distributions with locality structure [25, 34, 13].

Remark 2.1. (1) While Theorem 2.1 assumes log-concavity to apply Proposition 2.2, the expo-
nential decay of correlations is ubiquitous and does not inherently depend on log-concavity. The
assumption is adopted here for simplicity and to derive an explicit quantitative bound.

(2) It is natural to ask if Theorem 2.1 can be extended to the case where p0 is only approx-
imately localized. The answer depends on the sparsity of the graph G and the decay rate of
∇2

ij log p0. The resulting bound will be complicated, and we do not pursue it here.

We now state the key proposition:

Proposition 2.2. Suppose p is localized w.r.t. an undirected graph G and is log-concave and
smooth, i.e., ∃0 < m ≤ M < ∞ s.t. mI ⪯ −∇2 log p(x) ⪯ MI. Then for any i, j and Lipschitz
functions f : Rdi → R and g : Rdj → R, it holds∣∣Covp(x) (f(xi), g(xj))∣∣ ≤ 1

m

(
1− m

M

)dG(i,j)
|f |Lip |g|Lip . (2.16)

The proof can be found in Appendix A.2.

Remark 2.2. We note that the condition number κ := M
m of typical localized distributions is

independent of the dimension d. This is in contrast to the distributions for fixed-domain models
with finer resolution. The key difference is the different nature of the high-dimensionality. An
illustrative example is the 1d lattice model:

p(x) ∝ exp

(
1

2
xTAx− γ

2
∥x∥2

)
,

where x ∈ Rd, and xTAx comes from a discretized Laplacian.

1. Fixed-domain type. Fix the domain [0, 1] and take xk = kh and h = (d+ 1)−1. Then

−∇2 log p(x) = −A+ γI =
1

h2


2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

+ γI.

The condition number is thus

κ =
γ + 4h−2 sin2 dπ

2(d+1)

γ + 4h−2 sin2 π
2(d+1)

≈
sin2 dπ

2(d+1)

sin2 π
2(d+1)

≍ d2.

2. Extended-domain (locality) type. Fix the mesh size h = h0, and consider an extended domain
[0, (d+ 1)/h0]. Take xk = kh0, then −∇2 log p(x) has the same form as above with h = h0.
Therefore,

κ =
γ + 4h−2

0 sin2 dπ
2(d+1)

γ + 4h−2
0 sin2 π

2(d+1)

≈ γ + 4h−2
0

γ
≍ 1.

In summary, the high-dimensionality in distributions of fixed-domain type comes from re-
fined discretization; while for locality structure, it comes from an extended domain. Since
interaction is still local in the extended system, the condition number should be dimension
independent.
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3 Localized Diffusion Models

3.1 Localized Denoising Score Matching

3.1.1 Localized Hypothesis Space

To exploit the locality structure in diffusion models, we introduce the localized hypothesis space
for the score function,

Hr =
{
sθ : Rd+1 → Rd | sθ,j(x, t) = uθ,j(xN r

j
, t), uθ,j ∈ Uj , j ∈ [b]

}
, (3.1)

where r denotes the localization radius, N r
j is the extended neighborhood (2.11), and Uj is

certain hypothesis space for the j-th component of the score function to be specified later. Note
here we use sθ,j(·, t) to approximate the score function of pt in light of Theorem 2.1.

Define the effective dimension of sθ as

deff := max
j

dj,r, dj,r :=
∑
i∈N r

j

di. (3.2)

Since sθ(·, t) can be viewed as a collection of functions {uθ,j(·, t) : Rdj,r → Rdj}j∈[b], it is
essentially a function of deff variables. For sparse graph, deff ≪ d, so that intuitively estimating
sθ in Hr does not suffer from the CoD.

3.1.2 ReLU Neural Network

In practice, Hr can be realized by a neural network (NN) with locality constraints. Following
[32], we introduce the hyperparameters of a sparse NN as follows:

• L ∈ Z+ denotes the depth of the NN.

• W = (w0, . . . ,wL) ∈ RL+1 denotes the width vector of the NN.

• S,B denote the sparsity and boundedness of the parameters.

Consider the ReLU NN class with hyperparameters (L,W, S,B):

NN(L,W,S,B) = {uθ : Rw0 → RwL | θ ∈ Θ(L,W, S,B)},

Θ(L,W,S,B) =
{
θ = {Wl, bl}Ll=1 | Wl ∈ Rwl×wl−1 , bl ∈ Rwl , ∥θ∥0 ≤ S, ∥θ∥∞ ≤ B

}
,

uθ(x) = WLσ(WL−1σ(· · ·σ(W1x+ b1) · · · ) + bL−1) + bL,

(3.3)

where σ(x) = max{0, x} is the ReLU activation function (operated element-wise for a vector)
and ∥θ∥0 , ∥θ∥∞ are the vector ℓ0 and ℓ∞ norms of the parameter θ.

One can choose the hypothesis space Uj as consisting of such ReLU NNs:

Uj = NN(Lj ,Wj , Sj ,Bj), where wj
0 = dj,r + 1, wj

L = dj . (3.4)

Here the hyperparameters Lj ,Wj , Sj ,Bj are to be determined later.

3.1.3 Localized Score Matching

Given the hypothesis space Hr (3.1) with localized NN score Uj (3.4), we can learn the localized
score function by minimizing the denoising score matching loss (2.6). Given i.i.d. sample
{X(i)}Ni=1 from p0, the population loss (2.6) is approximated by the empirical loss, i.e.,

ŝ = argmin
sθ∈Hr

L̂N (sθ), (3.5)
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with

L̂N (sθ) =
1

N

N∑
i=1

∫ T

t
Eϵt∼N(0,I)

[∥∥∥sθ(αtX
(i) + σtϵt, t) + σ−1

t ϵt

∥∥∥2]dt. (3.6)

Notice L̂N is decomposable: L̂N (sθ) =
∑b

j=1 L̂j,N (uθ,j), where

L̂j,N (uθ,j) =
1

N

N∑
i=1

∫ T

t
Eϵt∼N(0,I)

[∥∥∥uθ,j(αtX
(i)
N r

j
+ σtϵt,N r

j
, t) + σ−1

t ϵt,j

∥∥∥2]dt. (3.7)

The optimal ûj then solves

ûj = argmin
uθ,j∈Uj

L̂j,N (uθ,j). (3.8)

This allows for parallel training of the localized NNs, i.e., the components of the score function
can be trained independently. Note the score function need not be a gradient field, which
introduces great flexibility in designing hypothesis space.

Remark 3.1. For general distributions, the components of the score function are correlated,
so that {sθ,j(x)}bj=1 should be trained simultaneously. However, for approximately localized
distributions, most components of sθ are almost uncorrelated, which facilitates parallel training.

3.2 Error Analysis

3.2.1 Error Decomposition

We do not consider time discretization here for simplicity. The sampling process is

dŶt =
(
Ŷt + 2ŝ(Ŷt, T − t)

)
dt+

√
2dWt, Ŷ0 ∼ N(0, I). (3.9)

And we take the early stopped distribution q̂T−t = Law(ŶT−t) as the approximation of p0. It
suffices to consider the error between q̂T−t and pt, as it is easier to control the early stopping
error, i.e., the distance between pt and p0. The following error decomposition is standard [9].

Proposition 3.1. Under Novikov’s condition [9]:

EQ

[
exp

(
1

2

∫ T−t

0
∥ŝ(Yt, T − t)− s(Yt, T − t)∥2 dt

)]
< ∞,

where Q = Law(Y[0,T−t]) denotes the path measure of the reverse process (2.2). It holds that

KL(pt∥q̂T−t) ≤ e−2TKL(p0∥N(0, I)) +
∫ T

t
Ext∼pt

[
∥ŝ(xt, t)− s(xt, t)∥2

]
dt. (3.10)

The proof can be found in Appendix B.1. We note that the first term on the right hand side
can be replaced by e−2(T−t)KL(pt∥N(0, I)) when p0 is singular w.r.t. N(0, I), so that it always
decays exponentially in T regardless of p0. Thus it suffices to control the second term; i.e. the
score approximation error.

3.2.2 Localized Score Function

As discussed in Section 2.3, strict locality is not preserved in the forward OU process, so that
the true score s /∈ Hr in general. It is therefore crucial to control the approximation error of
the best possible approximation s∗ ∈ Hr.

Consider taking Uj = C2(Rdj,r+1) in the localized hypothesis space Hr (3.1), so that the
only constraint in Hr is the locality structural constraint (note we always consider at least twice
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differentiable functions). Then the best possible approximation error can be identified as the
localization error of the score function. To avoid confusion, we denote H ∗

r as the hypothesis
space when we take Uj = C2(Rdj,r+1).

Motivated by (3.10), we consider the optimal approximation in the L2(pt) sense, i.e.,

s∗ = argmin
sθ∈H ∗

r

∫ T

t

∫
∥sθ(x, t)− s(x, t)∥2 pt(x)dxdt

⇔ ∀j, s∗j (x, t) = u∗j (xN r
j
, t), u∗j = argmin

uθ,j∈Uj

∫ T

t

∫
∥uθ,j(xN r

j
, t)− sj(x, t)∥2pt(x)dxdt.

Using the property of conditional expectation, it is straightforward to show that the optimizer
is

u∗j (xN r
j
, t) = Ex′∼pt

[
sj(x

′, t)
∣∣∣x′N r

j
= xN r

j

]
=

1

pt(xN r
j
)

∫
∇j log pt(xN r

j
, xN r⊥

j
)pt(xN r

j
, xN r⊥

j
)dxN r⊥

j
.

(3.11)

Here we denote N r⊥
j := [b] \ N r

j .
Due to the approximate locality (Theorem 2.1), one can expect that the approximation

error decays exponentially with the radius r. Before presenting the approximation result, we
introduce a quantitative condition [13] characterizing the sparsity of the graph G.

Definition 3.1. An undirected graph G is called (S, ν)-local if

∀j ∈ V, r ∈ N, |N r
j | ≤ 1 + Srν . (3.12)

In the above definition, S denotes the maximal size of the immediate neighbor, and ν
denotes the ambient dimension of the graph, which controls the growth rate of the neighborhood
volume with the radius. Here we require it growing at most polynomially to ensure effective
locality. Note the ambient dimension ν is typically a small number. A motivating example for
Definition 3.1 is the lattice model Zν , where a naive bound of the neighborhood volume is

|N r
j | = |{i ∈ Zν : ∥i∥1 ≤ r}| ≤ (2r + 1)ν < 1 + (3r)ν .

So that Zν is (3ν , ν)-local.
Now we state the approximation result.

Theorem 3.2. Let p0 satisfy the conditions in Theorem 2.1, and its dependency graph is (S, ν)-
local. Consider the hypothesis space H ∗

r (3.1) with Uj = C2(Rdj,r+1). Then there exists an
optimal approximation s∗ ∈ H ∗

r such that∫ T

t

∥∥s∗j (x, t)− sj(x, t)
∥∥2
L2(pt)

dt ≤ Cdj(r + 1)νe−c(r+1), (3.13)

where C and c are some dimensional independent constants depending on m,M,S, ν, i.e.,

C = 2Smax{1,m−1}ν!κ2ν+1 log κ, c = −2 log(1− κ−1).

Note (3.13) is independent of t, T . Moreover, for any sθ ∈ H ∗
r , the Pythagorean equality holds

∥sθ,j(x, t)− sj(x, t)∥2L2(pt)
=

∥∥sθ,j(x, t)− s∗j (x, t)
∥∥2
L2(pt)

+
∥∥s∗j (x, t)− sj(x, t)

∥∥2
L2(pt)

. (3.14)
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The proof can be found in Appendix B.2. (3.13) provides an upper bound for the hypothesis
error of using a localized score function to approximate the true score function. Note the bound
is independent of the ambient dimension d, although the true score sj(x, t) is a d-dimensional
function. Secondly, the bound decays exponentially (up to a polynomial factor) w.r.t. the radius
r, so that a small r is sufficient to achieve a good approximation. Finally, note taking summation
over j ∈ [b] in (3.13) gives the total approximation error∫ T

0
∥sθ(x, t)− s(x, t)∥2L2(pt)

dt ≤ Cd(r + 1)νe−c(r+1),

which scales linearly with the dimension d.

3.3 Sample Complexity

In this section, we demonstrate the key advantage of the localized diffusion models, i.e., that the
sample complexity is independent of the ambient dimension d. We will show that the denoising
score matching with the localized hypothesis space Hr is equivalent to fitting the L2-optimal
localized score in (3.11). Since the localized scores are low-dimensional functions, the sample
complexity should be independent of d.

3.3.1 Equivalent to Diffusion Models for Marginals

A key observation is that the localized denoising score matching loss (3.7) is equivalent to the
j-th component loss of the score function when we use standard diffusion model to approximate
the marginal distribution p0(xN r

j
). To be precise, denote its population version as

Lj(uθ,j) = Ex0∼p0

∫ T

t
Eϵt∼N(0,I)

[∥∥∥uθ,j(αtx0,N r
j
+ σtϵt,N r

j
, t) + σ−1

t ϵt,j

∥∥∥2]dt. (3.15)

The following proposition shows the equivalence.

Proposition 3.3. The following equalities hold:

Lj(uθ,j) = Ex0,Nr
j
∼p0

∫ T

t
Eϵt∼N(0,I)

[∥∥∥uθ,j(αtx0,N r
j
+ σtϵt,N r

j
, t) + σ−1

t ϵt,j

∥∥∥2]dt
= Ex0,Nr

j
∼p0

∫ T

t
Ext,Nr

j
∼pt|0(xt,Nr

j
|x0,Nr

j
)

[∥∥∥uθ,j(xt,N r
j
, t)−∇j log pt|0(xt,N r

j
|x0,N r

j
)
∥∥∥2]dt

=

∫ T

t
Ext,Nr

j
∼pt

[∥∥∥uθ,j(xt,N r
j
, t)− u∗j (xt,N r

j
, t)

∥∥∥2]dt+ const.

Here u∗j is the optimal localized approximation of the score function (3.11), and the constant
depends only on p0.

The proof can be found in Appendix B.3. Proposition 3.3 implies that the localized score
matching can be regarded as b diffusion models, each of which aims to fit (one component of)
the score function of a low-dimensional marginal distribution. Using the minimax results of
diffusion models, e.g. [32], one immediately obtains that the sample complexity of the localized
score matching is essentially independent of the ambient dimension d.

3.3.2 A Complete Error Analysis

We provide a concrete result below. Following [32], we assume a further boundedness constraint
on the hypothesis space Hr (3.1):

H N
r =

{
s ∈ Hr

∣∣∣ ∀j, ∥sj(·, t)∥∞ ≲
log2N

σt

}
. (3.16)
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The constraint is natural as the score function scales with σ−1
t ; see [32] for more discussions.

We also assume the following technical regularity conditions on the target distribution.

Assumption 3.1. The target distribution p0 satisfies the following conditions:

1. (Boundedness) p0 is supported on [−M,M ]d, and its density is upper and lower bounded by
some constants Cp, C

−1
p respectively.

2. (γ-smoothness) For any j ∈ [b], its marginal density p0(xN r
j
) ∈ BR(B

γ
a,b([−M,M ]dj,r)). Here

Bγ
a,b denotes the Besov space with 0 < a, b ≤ ∞ and γ > (1/a− 1/2)+, and BR denotes the

ball of radius R in the Besov space.

3. (Boundary smoothness) p0(xN r
j
)|Ω ∈ B1(C

∞(Ω)), where Ω = [−M,M ]dj,r \ [−M + a0,M −
a0]

dj,r is the boundary region for some sufficiently small width a0 > 0. Given sample size N ,

one can take a0 ≈ N
− 1

deff , where deff is the effective dimension (3.2).

Remark 3.2. [32] only considers the standard domain [−1, 1]d. It can be simply extended to
[−M,M ]d by scaling argument. Denote pM := Mdp0(M ·), then pM is supported on [−1, 1]d and
satisfies the same regularity conditions. Note the scaling only affects the radius R of the Besov
space, and does not change the scaling of the sample complexity.

See [32] for more discussions on the regularity conditions. The following theorem provides
an overall error analysis by combining Proposition 3.1, Theorem 3.2 and Theorem 4.3 in [32].
We comment that [44] points out a flaw in the proof in [32], but the issue is fixed in [44].

Theorem 3.4. Let p0 satisfy Assumption 3.1 and the conditions in Theorem 3.2. Given sample
size N , let H N

r be the bounded hypothesis space (3.16) with Uj = NN(Lj ,Wj ,Sj ,Bj) (3.4).
Denote nj = N−dj/(2γ+dj), and choose the hyperparameters

Lj = O(log4 nj),
∥∥Wj

∥∥
∞ = O(nj log

6 nj), Sj = O(nj log
8 nj), Bj = n

O(log lognj)
j .

choose t = O(N−k) for some k > 0 and T ≍ logN . Let ŝ be the minimizer of the empirical loss
(3.6) in H N

r . Denote q̂T−t as the sampled distribution using learned score ŝ. Then it holds that

E{X(i)}Ni=1
[KL(pt∥q̂T−t)] ≤ e−2TKL(p0∥N(0, I)) + Cd(r + 1)νe−c(r+1) + C ′bN

− 2γ
deff+2γ log16N.

(3.17)
Here deff is the effective dimension (3.2), C, c are dimensional independent constants in Theo-
rem 3.2, and C ′ is a dimensional independent constant.

The proof can be found in Appendix B.4. There are three sources of error in (3.17):

(1) Approximation error of pT , which decays exponentially in terminal time T ;

(2) Localization error of the score function, which decays exponentially in localization radius r;

(3) Statistical error, which decays polynomially in N , with statistical rate 2γ
deff+2γ .

Remark 3.3. (1) Compared to the vanilla method, the localized diffusion models achieve a much
faster statistical rate 2γ

deff+2γ ≫ 2γ
d+2γ , and thus potentially mitigate the curse of dimensionality.

(2) (3.17) indicates a trade off in the choice of localization radius r. A smaller r leads to
smaller statistical error but induces larger localization error. Note deff ≍ rν (see Definition 3.1),

so that the optimal choice is r∗ = O((logN)
1

ν+1 ). When logN ≪ d
ν+1
ν , one can show that the

overall error is greatly reduced compared to the usual statistical error:

e−cr∗ +N
− 2γ

d∗
eff

+2γ ≪ N
− 2γ

d+2γ .
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This is usually the case in high-dimensional problems, as one cannot obtain a large sample size
N exponentially in d.

(3) We compare the sampled distribution to the early-stopped distribution pt by convention.
In fact, the early-stopping error can be controlled straightforwardly in Wasserstein distance. For
instance, by Lemma 3 in [9], it holds that W2

2(p, pt) ≲ dt. So that the overall error

E{X(i)}Ni=1
[W2

2(p, q̂T−t)] ≲ W2
2(p, pt)+E{X(i)}Ni=1

[W2
2(pt, q̂T−t)] ≲ dN−k +E{X(i)}Ni=1

[KL(pt∥q̂T−t)].

Here the second inequality uses Talagand’s inequality. The early-stopping error does not dete-
riorate the order of convergence if one take k ≥ 1

2 .

4 Numerical Experiments

4.1 Gaussian model

In this section, we verify the quantitative results obtained before using Gaussian models. First,
we use randomly generated Gaussian distributions to show that the locality is approximately
preserved in OU process. Second, we consider sampling a discretized OU process, and show
that a suitable localization radius is important to balance the localization and statistical error.

4.1.1 Approximate locality

Consider localized Gaussian distribution

p0 = N(0, C0),

where the precision matrix P0 := C−1
0 is a banded matrix s.t.

P0(i, j) = 0, ∀|i− j| > r0.

We will generate random localized precision matrices P0 with different dimensions and band-
widths, by taking P0 = LLT, where L is a randomly generated banded lower triangular matrix.
As the condition number plays an important role in the locality, we will also record the condition
number of the precision matrices.

We consider diffusion models to sample the distribution. The score function admits an
explicit form s(x, t) = ∇ log pt(x) = −Ptx, where

Pt := −∇2 log pt = (α2
tC0 + σ2

t I)
−1.

We will focus on Pt, as the locality of the score function s(·, t) is equivalent to the locality of
the precision matrix Pt for Gaussians.

First, we show in the top-left plot in Figure 1 that the |Pt(i, j)| is indeed exponentially
decaying with |i − j|. Here we take a snapshot of the precision matrix at t = 0.1039, which is
the time with maximal effective localization radius (see bottom-left plot in Figure 1). We note
that the precise exponential decay is not chosen artificially, and any snapshot will yield similar
results.

We then compute the effective localization radius of Pt, which is defined as the largest r such
that the average of the r-th off-diagonal elements is larger than a threshold. More precisely,

rloc(t) := max
{
1 ≤ r < d :

1

d− r

∑
1≤i≤d−r

|Pt(i, i+ r)| ≥ ϵ · 1
d
tr(Pt)

}
. (4.1)

We take the threshold rate ϵ = 0.001. We plot the function rloc(t) for different dimensions d,
bandwidths r0 and condition numbers κ in Figure 1.
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Figure 1: Top-left: The precision matrix Pt at t = 0.1039, plotted in log |Pt| scale. We can see
precise exponential decay of Pt(i, j) in |i− j|. The rest plots are the localization radius rloc(t)
(4.1) under different problem dimension d, precision matrix bandwidth r0 and condition number
κ. Top-right: rloc(t) with different dimensions. Here r0 = 10 and the condition numbers are
similar (κ ≈ 193, 191, 197). Bottom-left: rloc(t) with different bandwidths. Here d = 1, 000 and
condition numbers κ ≈ 163, 146, 132. Bottom-right: rloc(t) with different condition numbers.
Here d = 1, 000 and r0 = 10.

From Figure 1, we can see that the effective localization radius rloc(t) first increases with t,
and then decreases to 1 when t is large. This is due to the fact that Pt can be regarded as an
interpolation between P0 and P∞ = I. Note this is consistent with the theoretical prediction in
Theorem 2.1, where the bound of ∥∇2

ij log pt∥ first increases with t and then decreases to 0. Next,
we can see that the effective localization radius rloc(t) is almost independent of the dimension
d, consistent with our motivation that the locality structure is approximately preserved with
dimension independent radius. We can also see that the effective localization radius rloc(t) is
almost linear in the bandwidth r0, and increases with the condition number κ.

4.1.2 Balance of localization error and statistical error

Consider a discretized OU process X ∈ Rd (d = 101), where Xn follows the dynamics

X1 ∼ N(0, 1), Xn+1 = αhXn + σhξn, ξn ∼ N(0, 1),

where αh = e−h, σ2
h = 1− α2

h (h = 0.2), and X1, ξ1, . . . , ξ100 are independent. Notice X follows
a Gaussian distribution

p0(x) = N(x1; 0, 1)
d−1∏
n=1

N(xn+1;αhxn, σ
2
h). (4.2)
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Consider using diffusion model to sample the above distribution. Since the marginals of the
forward process are all Gaussians, the score function is a linear function in x. Given data
sample {X(i)}Ni=1, we estimate the score of the linear form ŝ(t, x) = −P̂tx by the loss (2.6),
which admits an explicit solution

P̂t = (α2
t Ĉ0 + σ2

t I)
−1, (4.3)

where Ĉ0 is the empirical covariance of {X(i)}i=1. The non-localized backward process is

Ytn+1 = Ytn +∆tn

(
I − 2P̂T−tn

)
Ytn +

√
2∆tnξn. (4.4)

Here P̂t is the estimated optimal precision matrix (4.3), ξn ∼ N(0, I), Y0 ∼ N(0, I), and ∆tn =
tn+1 − tn is the time step. We use the linear variance schedule βn = (βN − β1)

n−1
N−1 + β1 (1 ≤

n ≤ N) [21], which corresponds to ∆tn = −1
2 log(1 − βN−n) (0 ≤ n ≤ N − 1). We take

N = 1, 000, β1 = 10−4 and βN = 0.05.
A straightforward localization of (4.4) is

Y loc,r
tn+1

= Y loc,r
tn +∆tn

(
I − 2P̂ loc,r

T−tn

)
Y loc,r
tn +

√
2∆tnξn,

P̂ loc,r
T−tn

(i, j) := P̂T−tn(i, j)1|i−j|≤r.
(4.5)

We will use (4.5) to sample the target distribution with different localization radii r, and compare

it to the reference sampling process (4.4). Although the localized score ŝloc,r(t, x) = −P̂ loc,r
t x

in (4.5) is not the minimzer of L̂N (sθ) (3.6), it is very close to the minimizer, and it still yields
a good approximation.

As all the distributions involved are Gaussian, we can use the sample covariance to measure
the localization error. We take data sample size N = 103 and generated sample size Ngen = 104.
The results are shown in Figure 2. In the top-right plot in Figure 2, we measure the relative
ℓ2-error of the sample covariance

err :=
∥Ĉ − C∥2

∥C∥2
, (4.6)

where C = P−1
0 is the true covariance, Ĉ is the sample covariance of samples from (4.4) or (4.5),

and ∥·∥2 is the matrix 2-norm. The reference error is computed using the sample covariance of
the non-localized backward process (4.4). For each localization radius, we run 30 independent
experiments (with new data sample) and compute the mean and standard deviation of the
relative error. The plot shows that as the localization radius increases, the overall error first
decays quickly, and then gradually increases. This is due to the balance between the localization
error and the statistical error, as shown more clearly in the bottom plots.

In the bottom row of Figure 2, we plot the entrywise error of the sample covariance (nor-
malized by ∥C∥2) for different localization radii r. The localization error dominates when the
localization radius is small, and we can see that the off-diagonal covariance is not accurately
estimated when r = 4. The off-diagonal part is approximately recovered when r = 12, and the
overall error decreases to minimal. As the localization radius r further increases, the statistical
error begins to dominate, leading to spurious long-range correlations as observed in the case
r = 35. This is a well-known phenomenon caused by insufficient sample size [23]. This suggests
a suitable localization radius is important to balance the localization and statistical error to
reduce the overall error, validating the result in Theorem 3.4.

4.2 Cox-Ingersoll-Ross model

We consider the Cox-Ingersoll-Ross (CIR) model [11, 12]

dX = 2a(b−X) dt+ σ
√
X dWt, (4.7)
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Figure 2: Top left: Trajectories directly sampled from OU process. Top middle: Sampled
trajectories using the localized sampling process (4.5) with localization radius r = 12. Top
right: Relative ℓ2-error (4.6) of the sample covariance for different localization radii r; the
reference error is from the non-localized sampling process (4.4). The shaded area denotes the
1σ region. Bottom: Entrywise error of the sample covariance with different localization radius
r ∈ {4, 12, 35}.

where Wt is standard one-dimensional Brownian motion. The CIR model (4.7) possesses a
closed form solution

X(t)

c(t)
∼ H(t), c(t) =

σ2

8a
(1− e−2at), (4.8)

where H(t) is a noncentral χ-squared distribution with 8ab/σ2 degrees of freedom and noncen-
trality parameter c(t)−1e−2atX(0).

We generate artificial data by integrating the CIR model (4.7) with an Euler–Maruyama
discretization and a time step of h = 0.01, sampling at every ∆t = 1 time unit. We determine
the score from M = 50 independent sample trajectories, each of length N = 50, i.e., each
trajectory covers 50 time units. We choose a = 1.136, b = 1.1 and σ = 0.4205.

For the diffusion model we choose a linear variance schedule with β(t) = (βT − β0)t/T + β0
with T = 0.05, βT = 0.5 and β0 = 0.0001, and where we sample the diffusion time t ∈ [0, T ] in
steps of 0.001 diffusion time units. The discount factor is given by α(t) = 1 − β(t). The score
is estimated from 5, 000 randomly selected training points, differing in their uniformly sampled
diffusion times and initial training sample. To learn the score function we employ a neural
network with 3 hidden layers of sizes 2r + 2, 6 and 3, respectively, with an input dimension of
2r+2 coming from the localized states of dimension 2r+1 and the diffusion time. The weights
of the neural network are determined by minimizing the MSE error using an Adams optimizer
with a learning rate η = 0.00005.

We show in Figure 3 a comparison of the empirical histograms and the auto-correlation
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functions of the training data and the data generated by the diffusion model. The histograms are
produced from 5, 000 training and generated time series. The auto-correlation function ⟨C(τ)⟩
is computed as an ensemble average over the samples. It is seen that if the localization radius is
chosen too small with r = 0, i.e., assuming a δ-correlated process, the auto-correlation function
rapidly decays as the localized diffusion models have no information about the correlations
present in the data. Interestingly, the empirical histogram is relatively well approximated even
with r = 0. On the other extreme, for large localization radius r = 20 the number of independent
training samples with M = 50 is not sufficiently large to generate N = 50-dimensional samples,
and the auto-correlation function exhibits an increased variance. We found that a localization
radius of r = 2 can be employed to yield excellent agreement of the histogram and the auto-
correlation function. We checked that varying the localization radius from r = 2 to r = 8 yields
similar results.

Figure 3: Comparison of the data obtained from the original CIR model (4.7) and from the
diffusion model for localization radii r = 0 (left), r = 2 (middle) and r = 20 (right). Top:
Empirical histogram. Bottom: Auto-correlation function, averaged over all 2, 500 samples. The
dashed lines mark deviations of the sample mean that are 1 standard deviation away. The light
grey lines show the individual auto-correlation functions of the generated data.

For the training we estimate the score function at entry i for i = 2r+1, . . . , N −2r−1 from
the localized state (xr)i = [xi−r, . . . , xi, . . . , xi+r] ∈ R2r+1. Due to stationarity of the process,
each component of the score function si((xr)i) will be the same except the boundaries, i.e. i ≤ r
or i ≥ d− r. This allows us to train a single score function which takes a (2r + 2)-dimensional
input (2r + 1 for the localized state and 1 for the diffusion time) to generate a 1-dimensional
output of the score function at location r < i < d− r. To deal with the boundaries of the time
series for i = 1, . . . , r and i = N − r, . . . , N , we pad with the time series x, reflected around i.
During the training process we have employed independent noise for each localized region. We
have checked that the results do not change if the noise in the diffusion model is kept constant
for each local input or if varied when cycling through the localized regions.
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5 Conclusions

In this work, we study how locality structure can be exploited in diffusion models to sample
high-dimensional distributions. We show that the locality structure is approximately preserved
in the forward diffusion process, which guarantees that localization error decays exponentially
in the localization radius. We propose the localized diffusion model, where we learn the score
function within a localized hypothesis space by optimizing a localized score matching loss. We
show that the localized diffusion model avoids the curse of dimensionality, and the rate of the
statistical error depends on the effective dimension rather than the ambient dimension. Through
both theoretical analysis and numerical experiments, we demonstrate that a suitable localization
radius can balance the localization and statistical error to reduce the overall error. This validates
the effectiveness of localization method in diffusion models for localized distributions.

However, several interesting questions remain open. First, the locality structure should
not rely on the log-concavity of the distributions, and it would be interesting to extend the
theoretical results to non-log-concave distributions. Second, designing of localized hypothesis
space requires prior knowledge of the locality structure. Although it can be learned by many
existing methods, it would be interesting to investigate how to combine them, or even learn the
locality structure adaptively in the diffusion model. We leave these questions for future work.
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A Proofs in Section 2

A.1 Proof of Theorem 2.1

Proof. Recall

pt(xt) =

∫
N(xt;αtx0, σ

2
t I)p0(x0)dx0.

We first compute the Hessian of the log density of pt:

∇2 log pt(xt) =
∇2pt(xt)

pt(xt)
− ∇pt(xt)

pt(xt)

∇pt(xt)
T

pt(xt)

=
1

pt(xt)

∫ (
−xt − αtx0

σ2
t

)(
−xt − αtx0

σ2
t

)T

N(xt;αtx0, σ
2
t I)p0(x0)dx0

− 1

pt(xt)

∫ (
−xt − αtx0

σ2
t

)
N(xt;αtx0, σ

2
t I)p0(x0)dx0

· 1

pt(xt)

∫ (
−xt − αtx0

σ2
t

)T

N(xt;αtx0, σ
2
t I)p0(x0)dx0

= σ−4
t Ep0|t(x0|xt) (xt − αtx0) (xt − αtx0)

T

− σ−4
t Ep0|t(x0|xt) (xt − αtx0)Ep0|t(x0|xt) (xt − αtx0)

T

= σ−4
t Covp0|t(x0|xt) (xt − αtx0, xt − αtx0)

= α2
tσ

−4
t Covp0|t(x0|xt) (x0, x0) ,

18



where p0|t(x0|xt) is the distribution of x0 conditioned on the value of xt. As a consequence

∇2
ij log pt(xt) = α2

tσ
−4
t Covp0|t(x0|xt) (x0,i, x0,j) . (A.1)

Consider the conditional distribution p0|t(x0|xt), whose log density is

log p0|t(x0|xt) = − log pt(xt) + log p0(x0)−
1

2σ2
t

∥xt − αtx0∥2 −
d

2
log(2πσ2

t ).

Fix xt, and denote for simplicity q(x) = p0|t(x|xt). Then

∇2 log q(x) = ∇2 log p0(x)−
α2
t

σ2
t

I.

Note by assumption, ∇2
ij log p0 = 0 if i /∈ Nj , and mI ⪯ −∇2 log p0 ⪯ MI. So that

∀i /∈ Nj , ∇2
ij log q(x) = 0.(

m+
α2
t

σ2
t

)
I ⪯ −∇2 log p0 ⪯

(
M +

α2
t

σ2
t

)
I. (A.2)

By Proposition 2.2, for any Lipschitz functions f, g, we have

∣∣Covq(x) (f(xi), g(xj))∣∣ ≤ |f |Lip |g|Lip
(
m+

α2
t

σ2
t

)−1(
1− mσ2

t + α2
t

Mσ2
t + α2

t

)dG(i,j)

.

Recall (A.1), and by definition of the matrix norm,∥∥∇2
ij log pt(xt)

∥∥ = sup
∥ti∥=∥tj∥=1

tTi ∇2
ij log pt(xt)tj = sup

∥ti∥=∥tj∥=1
α2
tσ

−4
t Covq(x)

(
tTi xi, t

T
j xj

)
.

Take f(xi) = tTi xi and g(xj) = tTj xj , and note |f |Lip = |g|Lip = 1, we obtain

∥∥∇2
ij log pt(xt)

∥∥ ≤ α2
tσ

−4
t

(
m+

α2
t

σ2
t

)−1(
1− mσ2

t + α2
t

Mσ2
t + α2

t

)dG(i,j)

.

The conclusion follows by noting the above bound holds for all x.

A.2 Proof of Proposition 2.2

Proof. By subtracting the mean, we assume w.l.o.g. that Ep(x)[f(xi)] = Ep(x)[g(xj)] = 0. Then

Covp(x) (f(xi), g(xj)) =

∫
f(xi)g(xj)p(x)dx.

Consider the marginal Stein equation [13]

−∆uf (x)−∇ log p(x) · ∇uf (x) = f(xi).

By Lemma A.1, the following gradient estimate of uf holds:

∥∇juf∥∞ ≤ 1

m

(
1− m

M

)dG(i,j)
|f |Lip .
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By integration by parts, it holds that∫
f(xi)g(xj)p(x)dx =

∫
(−∆uf (x)−∇ log p(x) · ∇uf (x)) g(xj)p(x)dx

=

∫
∇uf (x) · ∇xg(xj)p(x)dx

+

∫
∇uf (x) · ∇p(x)g(xj)dx−

∫
∇uf (x) · ∇ log p(x)g(xj)p(x)dx

=

∫
∇juf (x) · ∇g(xj)p(x)dx.

Here we use ∇xig(xj) = 0 if i ̸= j. Combined, we obtain

∣∣Covp(x) (f(xi), g(xj))∣∣ = ∣∣∣∣∫ ∇juf (x) · ∇g(xj)p(x)dx

∣∣∣∣
≤

∫
∥∇juf (x)∥ ∥∇g(xj)∥ p(x)dx ≤ 1

m

(
1− m

M

)dG(i,j)
|f |Lip |g|Lip .

This completes the proof.

Lemma A.1. Suppose p is localized w.r.t. an undirected graph G and is log-concave and smooth,
i.e., ∃0 < m ≤ M < ∞ s.t. mI ⪯ −∇2 log p(x) ⪯ MI. For any i and Lipschitz function
f : Rdi → R, consider the marginal Stein equation

−∆puf (x) := −∆uf (x)−∇ log p(x) · ∇uf (x) = f(xi)− Ep(x)[f(xi)]. (A.3)

The following gradient estimate holds:

∥∇juf∥∞ ≤ 1

m

(
1− m

M

)dG(i,j)
|f |Lip . (A.4)

Proof. The proof is based on a refined analysis of that in [13]. Note ∆p = ∆+∇ log p · ∇ is the
generator of the Langevin dynamics

dXx
t = ∇ log p(Xx

t )dt+
√
2dWt, Xx

0 = x. (A.5)

The Stein equation with such generator type operators is known to admit explicit solutions [3]:

uf (x) = −
∫ ∞

0
E
(
f(Xx

t,i)− Eπ[f(xi)]
)
dt.

See also [13] for a detailed proof. Differentiating w.r.t xj gives

∇juf (x) = −
∫ ∞

0
E
[
∇jX

x
t,i · ∇f(Xx

t,i)
]
dt.

Here ∇jX
x
t,i is the partial derivative w.r.t xj of the sample path. Note taking derivative on both

sides is valid due to the exponential decay of ∇jX
x
t,i. Since f is Lipschitz, we obtain

∥∇juf (x)∥ ≤
∫ ∞

0
E
[
∥∇jX

x
t,i∥

∥∥∇f(Xx
t,i)

∥∥]dt ≤ |f |Lip
∫ ∞

0
E∥∇jX

x
t,i∥dt. (A.6)

So that it remains to control ∇jX
x
t,i. Differentiating w.r.t. x in (A.5), we obtain

d∇Xx
t = −Ht · ∇Xx

t dt, Ht := −∇2 log p(Xx
t ).
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Denote Gt = emt∇Xx
t and Ht = Ht −mI, then it holds that

d

dt
Gt = emt (m∇Xx

t −Ht∇Xx
t ) = −HtGt, G0 = ∇Xx

0 = I.

By assumption, 0 ⪯ Ht ⪯ (M −m)I, and Ht has dependency graph G. By Lemma 6.2 in [13],

∥∇jX
x
t ∥ = e−mt∥Gt(i, j)∥ ≤ e−Mt

∞∑
k=dG(i,j)

tk(M −m)k

k!
.

Recall (A.6), this implies

∥∇juf (x)∥ ≤ |f |Lip
∫ ∞

0
E∥∇jX

x
t,i∥dt

≤ |f |Lip
∫ ∞

0
e−Mt

∞∑
k=dG(i,j)

tk(M −m)k

k!
dt

= |f |Lip
1

M

∞∑
k=dG(i,j)

(
1− m

M

)k
=

1

m

(
1− m

M

)dG(i,j)
|f |Lip .

The conclusion follows by noting the above bound holds for all x.

B Proofs in Section 3

B.1 Proof of Proposition 3.1

Proof. Denote the path measures for the reverse process (2.2) and the sampling process (3.9)
as Q and Q̂ respectively, i.e., Qt = Law(Yt), Q̂t = Law(Ŷt). By the data-processing inequality,
we have

KL(pt∥q̂T−t) = KL(QT−t∥Q̂T−t) ≤ KL(Q[0,T−t]∥Q̂[0,T−t]).

By the Girsanov theorem [2], we have

KL(Q[0,T−t]∥Q̂[0,T−t]) = KL(Q0∥Q̂0) +

∫ T−t

0
Eyt∼Qt

[
∥ŝ(yt, T − t)− s(yt, T − t)∥2

]
dt

= KL(pT ∥N(0, I)) +
∫ T

t
Ext∼pt

[
∥ŝ(xt, t)− s(xt, t)∥2

]
dt.

By the convergence of the OU process [2], we have

KL(pT ∥N(0, I)) ≤ e−2TKL(p0∥N(0, I)).

The conclusion follows by combining the above relations.

B.2 Proof of Theorem 3.2

Proof. Note the optimal solution is given by (3.11), i.e.,

s∗j (x, t) = Ex′∼pt

[
∇j log pt(x

′)
∣∣∣x′N r

j
= xN r

j

]
.

By (A.2), pt is
(
m+

α2
t

σ2
t

)
-strongly log-concave, so that the conditional distribution pt(xN r⊥

j
|xN r

j
)

is also
(
m+

α2
t

σ2
t

)
-strongly log-concave. By the Poincaré inequality [2],∥∥s∗j (x, t)− sj(x, t)

∥∥2
L2(pt)

= ExNr
j
∼pt

[
Ex′∼pt

[∥∥s∗j (x′, t)−∇j log pt(x
′)
∥∥2 ∣∣∣x′N r

j
= xN r

j

]]
≤ ExNr

j
∼pt

[(
m+

α2
t

σ2
t

)−1

Ex′∼pt

[
∥∇N r⊥

j
∇j log pt(x

′)∥2F
∣∣∣x′N r

j
= xN r

j

]]
.
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Here ∥ · ∥F denotes the Frobenius norm. By Theorem 2.1, it holds that

∥∥∇2
ij log pt(x)

∥∥
∞ ≤ α2

t

σ2
t

(
mσ2

t + α2
t

) (1− mσ2
t + α2

t

Mσ2
t + α2

t

)dG(i,j)

.

Since ∥∇2
ij log pt(x)∥2F ≤ dj∥∇2

ij log pt(x)∥2∞, we obtain that

Ex′∼pt

[
∥∇N r⊥

j
∇j log pt(x

′)∥2F
∣∣∣x′N r

j
= xN r

j

]
=

∑
i:dG(i,j)>r

Ex′∼pt

[
∥∇2

ij log pt(x
′)∥2F

∣∣∣x′N r
j
= xN r

j

]

≤ dj
∑

i:dG(i,j)>r

α4
t

σ4
t

(
mσ2

t + α2
t

)2 (1− mσ2
t + α2

t

Mσ2
t + α2

t

)2dG(i,j)

.

Therefore, ∫ T

0

∥∥s∗j (x, t)− sj(x, t)
∥∥2
L2(pt)

dt

≤
∫ T

0

dj ∑
i:dG(i,j)>r

(
m+

α2
t

σ2
t

)−1
α4
t

σ4
t

(
mσ2

t + α2
t

)2 (1− mσ2
t + α2

t

Mσ2
t + α2

t

)2dG(i,j)
dt

≤ dj

∞∑
k=r+1

|{i : dG(i, j) = k}|
∫ ∞

0

α4
t

σ2
t

(
mσ2

t + α2
t

)3 (1− mσ2
t + α2

t

Mσ2
t + α2

t

)2k

dt

≤ dj max{1,m−1} log κ
∞∑

k=r+1

|{i : dG(i, j) = k}|(1− κ−1)2k.

The last step uses Lemma B.1. By the Abel transformation and the sparsity assumption (3.12),

∞∑
k=r+1

|{i : dG(i, j) = k}|(1− κ−1)2k =

∞∑
k=r+1

[
|N k

j | − |N k−1
j |

]
(1− κ−1)2k

=

∞∑
k=r+1

|N k
j |

[
(1− κ−1)2k − (1− κ−1)2(k+1)

]
− |N r

j |(1− κ−1)2(r+1)

≤ Sκ−1(2− κ−1)
∞∑

k=r+1

kν(1− κ−1)2k ≤ 2Sκ−1(1− κ−1)2r
∞∑
k=1

(k + r)ν(1− κ−1)2k.

One can show that
∑

k∈Z+
knxk ≤ n!x(1− x)−n−1 (see Lemma A.2 in [13]), so that

∞∑
k=1

(k + r)ν(1− κ−1)2k =
∞∑
k=1

(
1 +

r

k

)ν
kν(1− κ−1)2k ≤ (r + 1)ν

∞∑
k=1

kν(1− κ−1)2k

≤ (r + 1)νν!(1− κ−1)2[1− (1− κ−1)2]−ν−1 ≤ (r + 1)νν!(1− κ−1)2κ2(ν+1).

Combining the above inequalities, we obtain∫ T

t

∥∥s∗j (x, t)− sj(x, t)
∥∥2
L2(pt)

dt ≤
∫ T

0

∥∥s∗j (x, t)− sj(x, t)
∥∥2
L2(pt)

dt

≤ dj max{1,m−1} log κ · 2Sκ−1(1− κ−1)2r · (r + 1)νν!(1− κ−1)2κ2(ν+1)

= Cdj(r + 1)ν(1− κ−1)2(r+1).
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where we denote C = 2Smax{1,m−1}ν!κ2ν+1 log κ.
The second claim follows from the property of conditional expectation:

∥sθ,j(x, t)− sj(x, t)∥2L2(pt)
= ∥uθ,j(xN r

j
, t)− sj(x, t)∥2L2(pt)

= ExNr
j
∼pt

[
Ex′∼pt

[
∥uθ,j(xN r

j
, t)− u∗j (xN r

j
, t) + u∗j (xN r

j
, t)− sj(x

′, t)∥2
∣∣∣x′N r

j
= xN r

j

]]
= ExNr

j
∼pt

[
∥uθ,j(xN r

j
, t)− u∗j (xN r

j
, t)∥2

]
+ ExNr

j
∼pt

[
Ex′∼pt

[
∥u∗j (xN r

j
, t)− sj(x

′, t)∥2
∣∣∣x′N r

j
= xN r

j

]]
= ∥sθ,j(x, t)− s∗j (x, t)∥2L2(pt)

+ ∥s∗j (x, t)− sj(x, t)∥2L2(pt)
.

This completes the proof.

Lemma B.1. Let κ = M/m ≥ 1 and k ≥ 1. It holds that∫ ∞

0

α4
t

σ2
t

(
mσ2

t + α2
t

)3 (1− mσ2
t + α2

t

Mσ2
t + α2

t

)2k

dt ≤ max{1,m−1} log κ(1− κ−1)2k.

Proof. Denote λ =
α2
t

σ2
t

=
e−2t

1− e−2t
, then σ2

t =
1

1 + λ
and

dλ

dt
= −2λ(1 + λ). The integral is

∫ ∞

0

λ2(1 + λ)2

(m+ λ)3

(
1− m+ λ

M + λ

)2k dλ

2λ(1 + λ)
=

∫ ∞

0

λ(1 + λ)

2 (m+ λ)3

(
1− m+ λ

M + λ

)2k

dλ.

Let x = λ/m, and the integral can be bounded by∫ ∞

0

mx(1 +mx)

2 (m+mx)3

(
1− m+mx

M +mx

)2k

mdx ≤ max{1,m}
2m

∫ ∞

0

x

(1 + x)2

(
1− 1 + x

κ+ x

)2k

dx.

Notice

1

(1− κ−1)2k

∫ ∞

0

x

(1 + x)2

(
1− 1 + x

κ+ x

)2k

dx =

∫ ∞

0

x

(1 + x)2

(
κ

κ+ x

)2k

dx

=

∫ ∞

0

y

(κ−1 + y)2

(
1

1 + y

)2k

dy ≤
∫ ∞

0

y

(κ−1 + y)2

(
1

1 + y

)2

dy

<

∫ κ−1

0
κ2ydy +

∫ 1

κ−1

dy

y
+

∫ ∞

1

dy

y3
= 1 + log κ ≤ 2 log κ.

The conclusion follows by combining the above inequalities.

B.3 Proof of Proposition 3.3

Proof. The first equality directly follows from the definition (3.15). Since only x0,N r
j
is involved,

it suffices to take expectation w.r.t. the marginal distribution p(xN r
j
).

For the second inequality, notice

pt|0(xt,N r
j
|x0,N r

j
) = N(xt,N r

j
;αtx0,N r

j
, σ2

t I).

It holds that
∇j log pt|0(xt,N r

j
|x0,N r

j
) = −σ−2

t (xt,j − αtx0,j).
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Note xt,N r
j
= αtx0,N r

j
+ σtϵt ∼ pt|0(xt,N r

j
|x0,N r

j
) if ϵt ∼ N(0, Ir), so that

Ext,Nr
j
∼pt|0(xt,Nr

j
|x0,Nr

j
)

[∥∥∥uθ,j(xt,N r
j
, t)−∇j log pt|0(xt,N r

j
|x0,N r

j
)
∥∥∥2]

= Eϵt∼N(0,I)

[∥∥∥uθ,j(αtx0,N r
j
+ σtϵt,N r

j
, t) + σ−1

t ϵt,j

∥∥∥2] .
This verifies the second inequality.

For the third inequality, we first claim that

u∗j (xt,N r
j
, t) = ∇j log pt(xt,N r

j
). (B.1)

Given this, the third inequality follows from the basic trick in denoising score matching: take
y = xt,N r

j
, z = x0,N r

j
and π(y, z) = pt,0(xt,N r

j
, x0,N r

j
) in the following identity:

Ez∼π(z)Ey∼π(y|z) ∥sθ(y)−∇y log π(y|z)∥2

= Ez∼π(z)Ey∼π(y|z)

[
∥sθ(y)∥2 − 2(sθ(y))

T∇y log π(y|z) + ∥∇y log π(y|z)∥2
]

= Ez∼π(z)Ey∼π(y|z)

[
∥sθ(y)∥2 + 2tr (∇sθ(y)) + ∥∇y log π(y|z)∥2

]
= Ey∼π(y)

[
∥sθ(y)∥2 + 2tr (∇sθ(y)) + ∥∇y log π(y)∥2

]
+ const

= Ey∼π(y) ∥sθ(y)−∇y log π(y)∥2 + const.

Here the second inequality follows from integration by parts; in the third inequality, we take

const = Ez∼π(z)Ey∼π(y|z) ∥∇y log π(y|z)∥2 − Ey∼π(y) ∥∇y log π(y)∥2 ,

which is independent of θ; the last equality follows from the same integration by parts trick.
It then suffices to prove (B.1). Note that

u∗j (xt,N r
j
, t) = Ex′

t∼pt

[
sj(x

′
t, t)

∣∣∣x′t,N r
j
= xt,N r

j

]
=

1

pt(xN r
j
)

∫
∇j log pt(xt,N r

j
, xt,N r⊥

j
)pt(xt,N r

j
, xt,N r⊥

j
)dxt,N r⊥

j

=

∫
∇jpt(xt,N r

j
, xt,N r⊥

j
)dxt,N r⊥

j∫
pt(xt,N r

j
, xt,N r⊥

j
)dxt,N r⊥

j

.

Since

pt(xt) =

∫
N(xt;αtx0, σ

2
t I)p0(x0)dx0.

⇒ ∇jpt(xt) =

∫ (
−σ−2

t (xt,j − αtx0,j)
)
N(xt;αtx0, σ

2
t I)p0(x0)dx0.

So that

u∗j (xt,N r
j
, t) =

∫ (
−σ−2

t (xt,j − αtx0,j)
)
N(xt;αtx0, σ

2
t I)p0(x0)dx0dxt,N r⊥

j∫
N(xt;αtx0, σ2

t I)p0(x0)dx0dxt,N r⊥
j

=

∫ (
−σ−2

t (xt,j − αtx0,j)
)
N(xt,N r

j
;αtx0,N r

j
, σ2

t I)p0(x0,N r
j
)dx0,N r

j∫
N(xt,N r

j
;αtx0,N r

j
, σ2

t I)p0(x0,N r
j
)dx0,N r

j

.
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On the other hand,

∇j log pt(xt,N r
j
) =

∇jpt(xt,N r
j
)

pt(xt,N r
j
)

=

∫
∇jN(xt,N r

j
;αtx0,N r

j
, σ2

t I)p0(x0,N r
j
)dx0,N r

j∫
N(xt,N r

j
;αtx0,N r

j
, σ2

t I)p0(x0,N r
j
)dx0,N r

j

=

∫ (
−σ−2

t (xt,j − αtx0,j)
)
N(xt,N r

j
;αtx0,N r

j
, σ2

t I)p0(x0,N r
j
)dx0,N r

j∫
N(xt,N r

j
;αtx0,N r

j
, σ2

t I)p0(x0,N r
j
)dx0,N r

j

= u∗j (xt,N r
j
, t).

This completes the proof.

B.4 Proof of Theorem 3.4

Proof. By the Pythagorean equality (3.14),

Ext∼pt

[
∥ŝ(xt, t)− s(xt, t)∥2

]
=

b∑
j=1

Ext∼pt

[
∥ŝj(xt, t)− sj(xt, t)∥2

]

=
b∑

j=1

Ext∼pt

[∥∥ŝj(xt, t)− s∗j (xt, t)
∥∥2]+ b∑

j=1

Ext∼pt

[∥∥s∗j (xt, t)− sj(xt, t)
∥∥2] .

Combining Proposition 3.1 and Theorem 3.2, we obtain

KL(pt∥q̂T−t) ≤ e−2TKL(p0∥N(0, I)) +
∫ T

t
Ext∼pt

[
∥ŝ(xt, t)− s(xt, t)∥2

]
dt

= e−2TKL(p0∥N(0, I)) +
∫ T

t
Ext∼pt

[
∥s∗(xt, t)− s(xt, t)∥2

]
dt+R

≤ e−2TKL(p0∥N(0, I)) + Cd(r + 1)νe−c(r+1) +R,

where we denote

R =

b∑
j=1

Rj , Rj =

∫ T

t
Ext∼pt

[∥∥ŝj(xt, t)− s∗j (xt, t)
∥∥2] dt.

By Proposition 3.3, Rj is the j-th component loss of the score function when we use a standard
diffusion model to approximate the marginal distribution p0(xNr

j
). Note one can use the same

constructive solution as in [32] for the marginal target p0(xN r
j
) with only the j-th component

output as the constructive solution for ŝj , and the statistic error analysis similarly applies.
Therefore, we can take the same hyperparameters as in [32]:

Lj = O(log4 nj),
∥∥Wj

∥∥
∞ = O(nj log

6 nj), Sj = O(nj log
8 nj), Bj = n

O(log lognj)
j ,

where nj = N−dj/(2γ+dj). Note n,N in our paper correspond to N,n in [32] respectively.
Similarly for the time interval choices: t = O(N−k) for some k > 0 and T ≍ logN . The j-th
component loss Rj is smaller than the overall score matching loss, which is further bounded in
Theorem 4.3 in [32]:

E{X(i)}Ni=1
[Rj ] ≤ C ′N

− 2γ
dj+2γ log16N.

Therefore,

E{X(i)}Ni=1
[R] =

b∑
j=1

E{X(i)}Ni=1
[Rj ] ≤ C ′bN

− 2γ
deff+2γ log16N.

This completes the proof.
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