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R Marangell Part I - Linear Systems

1. A Mild Introduction

The purpose of this course is to answer the following questions:

• What is a differential equation?
• How can we best understand a given differential equation?

We can answer the first question right away, but answering the second question
has occupied scientists/mathematicians since differential equations were originally
formulated in the 17th century. The short answer to the first question is a differential
equation1 is a relationship between a function and its derivative. When the function
depends only on a single variable, the differential equation is called an ordinary
differential equation or an ODE. This is what this course is about. Compare this to
a partial differential equation, which is a differential equation where the function(s)
depends on more than one variable.

Usually our functions are functions of time, so we denote the independent variable
by t. Also, typically we don’t want to consider only (scalar valued) functions. We
want to consider vector valued functions

y : R→ Rd.

A differential equation is then an equation of the form

F

(
t,
dy

dt
,
d2y

dt2
, . . . ,

dky

dtk

)
= 0

To save on some writing, the derivative of y with respect to t,
dy

dt
is denoted by ẏ.

If y ∈ Rd, then we say we have a system of d ODEs. The ODE is said to be of order
k if F depends on the kth derivative of y but not on any higher derivatives. If you
can solve for the derivative of the highest order so as to write:

dky

dtk
= G

(
t,y, ẏ, ÿ, . . . ,

dk−1y

dtk−1

)
,

then the ODE is called explicit. Otherwise it is called implicit. In this case the
coefficient of the highest derivative typically vanishes on some subset of the phase
space, and the ODE is said to have “singularities”. If we have an explicit ODE, we
can rewrite it as a system of first order equations by defining new variables

x1 := y, x2 := ẏ, . . . , xi :=
di−1y

dti−1
, . . . , xk :=

dk−1y

dtk−1
.

This results in a new system of first order equations

ẋ1 = x2

...

ẋi = xi+1

...

ẋk = G (t,x1,x2, . . . ,xk) .

(1.1)

1I will typically try to single out definitions as needed in these notes, but in this first (presum-
ably) review section as well as in the tutorial sheets, I will just be italicising them inline for the
sake of brevity
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(By the way, there are other ways of converting a system to first order and in many
applications, these are way more convenient.)

Since each xi represents d variables, we actually have a system of n = kd variables.
Thus, each kth order system of ODE’s on Rd is a first order system on Rn. Equation
(1.1) is a special case of a general system of first order ODEs,

dxi
dt

= fi(t, x1, x2, . . . , xn), i = 1, 2, . . . , n

which can be written even more compactly as

(1.2) ẋ = f(t,x)

For a bit, we’ll use the x notation (boldface) to denote that we’re considering x to
be a vector, but after a while, we’ll drop this and get around it by specifying clearly
the domain and range of our functions, and letting the context make it clear what
we’re talking about. When f is independent of t equation (1.2) is called autonomous
and we can simplify (1.2) even further to

(1.3) ẋ = f(x).

For the system (1.3), the function f specifies the ‘velocity’ at each point in the phase
space (or domain of f). This is called a vector field.

In principle we can reduce a non–autonomous system to an autonomous one by
introducing a new variable xn+1 = t and so we have ẋn+1 = 1, and we have a new
system of equations defined on space of one higher dimension. However, in practice,
sometimes it is better to think about the autonomous and non–autonomous case
separately

Often we are interested in solutions to ODE’s that start at a specific initial state,
so x(0) = x0 ∈ Rn for example. These are called Cauchy problems or initial value
problems. What is awesome is that you can pretty much always numerically compute
(over a short enough time anyway) the solution to a Cauchy problem. However, the
bad news is that it is almost impossible to write down a closed form for an analytic
solution to a Cauchy problem. We can however, (by being clever and hardworking)
devise methods for analysing the solutions to ODEs without actually solving them.
This is a reasonable approximation of a definition of what the field of continuous-
time dynamical systems is about. (It is of course about much more than this, I
just wanted to give succinct paraphrasing of how someone who works in the area of
continuous time dynamical systems might describe their work).

Let’s do some examples illustrating how to pass from an explicit ODE to a first
order system.

Example 1.1. Consider the following (explicit) third order ODE:

(1.4)
...
y − (ÿ)2 + ẏy + cos(t) = 0

Here y(t) is a function of the real variable t. We can rewrite eq. (1.4) as

(1.5)
...
y = (ÿ)2 − ẏy − cos(t) =: G(t, y, ẏ, ÿ)

Now we define new dependent variables (i.e. functions of t) x1, x2, and x3 as

x1(t) := y(t), x2(t) := ẏ(t) x3(t) := ÿ(t)
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Now we have a new first order system of equations

ẋ1 =
d

dt
y = ẏ = x2

ẋ2 =
d

dt
ẏ = ÿ = x3

ẋ3 =
d

dt
ÿ =

...
y = x2

3 − x2x1 − cos(t) = G(t, x1, x2, x3)

(1.6)

Now if we let x =

x1

x2

x3

 then we can succinctly write eq. (1.6) as

ẋ = f(t,x)

where f(x) is the function f : R× R3 → R3 given by

f(t, x1, x2, x3) = (x2, x3, G(t, x1, x2, x3))

Example 1.2. Consider the second order system of ODEs given by

(1.7) ÿ + Ay = 0

where y = (y1, y2)> is a vector of functions in R2 and A is a 2× 2 matrix with real
entries, say

A :=

(
a b
c d

)
.

To get a feel for the utility of the notation, writing this out, we have the following
system of ODEs

ÿ1 + ay1 + by2 = 0

ÿ2 + cy1 + dy2 = 0
(1.8)

To write this out as a first order system, we follow the prescription given in the first
section. We set x1 := y and so if x1 = (x1, x2)> := (y1, y2)>, we have x1 = y1 and
x2 = y2 and we set x2 := ẏ so if x2 = (x3, x4)>, then x3 := ẏ1 and x4 := ẏ2. Now we
use eq. (1.7) and the defining relations for xi to get a 4× 4 first order system

ẋ1 = x3

ẋ2 = x4

ẋ3 = −ax1 − bx2

ẋ4 = −cx1 − dx2.

(1.9)

It is possible to write this more compactly (still as a first order system).

(1.10)

(
ẋ1

ẋ2

)
=

(
0 I
−A 0

)(
x1

x2

)
where I is the 2× 2 identity matrix. Or even more simply if we set x := (x1,x2)> =
(x1, x2, x3, x4) ( = (y1, y2, ẏ1ẏ2) in our original dependent variables), then we can
write ẋ = Bx, where B is the 4× 4 matrix on the right hand side of eq. (1.10).
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2. The First Examples

For the most part this class is about the following equation (in some form or
another)

(2.1) ẋ = f(x).

Here ẋ means
dx

dt
, x(t) is (typically) a vector of functions x = (x1(t), . . . , xn(t)) with

xi(t) : R → R, and f is a map from Rn to Rn. We’ll begin our study of ordinary
differential equations (and hence of (2.1)) with the simplest types of f .

Example 2.1 (The function f(x) = 0). Let’s start by considering the simplest
function possible for the right hand side of eq. (2.1), f(x) ≡ 0. In this case, there
are no dynamics at all, and so if x(t) = (x1(t), . . . , xn(t)), then eq. (2.1) becomes

(2.2) ẋ1 = 0, ẋ2 = 0, · · · , ẋn = 0.

The solution to our ODE in this case will be an n-tuple of functions (x1(t), . . . xn(t))
which simultaneously satisfy ẋ(t) = 0. It is easy to solve the ODE in this case, we
just integrate each of the equations in eq. (2.2) once to get

(2.3) x1(t) = c1, · · · , xn(t) = cn,

where the ci’s are the constants of integration. Or more succinctly, we have

x(t) = c

where c ∈ Rn is a constant vector. For what it’s worth, we remark here that all
possible solutions to ẋ = 0 are of this form, and that the set of all possible solutions,
i.e. the solution space is a vector space ≈ Rn.

Example 2.2 (The function f(x) = c). A slightly (though not much) more com-
plicated example is when the right hand side of eq. (2.1) is a constant function, or
constant vector in c ∈ Rn. In this case we have

(2.4) ẋ1 = c1, ẋ2 = c2, · · · , ẋn = cn.

Just as before, we can integrate these equations once more to get

(2.5) x1(t) = c1t+ d1, · · · , xn(t) = cnt+ dn,

where the di’s are the constants of integration this time. Again, we remark that the
dimension of the set of solutions is n. The solutions don’t form a vector space per
se, as the sum of two solutions is not again a solution. However, the set of solutions
does contain a vector space of dimension n.

Related to this (and essentially just as simple) is when the right hand side of
eq. (2.1) is independent of x. In this case, we can again integrate each vector
component separately to solve our system. For example, suppose the right hand
side were F (t) = (f1(t), f2(t), . . . , fn(t)). Our system of equations would then be

(2.6) ẋ1 = f1(t), ẋ2 = f2(t), · · · , ẋn = fn(t),

and we could solve each equation independently by simply finding the anti-derivative
(if possible).
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3. Matrix ODEs

Now we’re going to move on from the simplest examples, to the next simplest type
of f . We want to study eq. (2.1) when f is a linear map in the dependent variables
xi. Such systems are called linear ODEs or linear systems. ‘Recall’ the following:

Definition 3.1. A map f : Rn → Rn is called linear if the following hold

(1) (superposition) f(x + y) = f(x) + f(y) for all x and y in Rn

(2) (linear scaling) f(cx) = cf(x) for all c ∈ R and x in Rn.

Remark. A quick aside, Example 2.1 is an example of when f(x) is a linear map,
while Example 2.2 is not an example of f(x) being a linear map (in fact both
properties in Definition 3.1 fail - try to see why). It is close though and sometimes
it is called an affine map.

As you should already know, a linear map (sometimes called a linear transforma-
tion) f : Rn → Rn, can be represented as a matrix once you choose a basis. If we let
A denote the n× n matrix of the linear transformation f , this transforms eq. (2.1)
into

(3.1) ẋ = Ax.

If A does not depend on t, we say it is a constant coefficient matrix. For the most part
we’ll consider A to be a real valued matrix, although this is not strictly necessary.
In fact, almost everything about this course can be translated to work over C, the
complex numbers (some things quite easily, some not so much). For now, we will
consider primarily constant coefficient matrices.

Example 3.1. Let’s define the following matrices:

A1 =

(
−4 −2
1 −1

)
, A2 =


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 , and A3 =

−1 1 −2
0 −1 4
0 0 1

 .

In terms of eq. (3.1) this means, say for A1, that x is two dimensional (because A1

is 2× 2) and eq. (3.1) becomes

(3.2)

(
ẋ1(t)
ẋ2(t)

)
=

(
−4 −2
1 −1

)(
x1(t)
x2(t)

)
=

(
−4x1(t)− 2x2(t)
x1(t)− x2(t)

)
.

So we have a system of 2 linear ordinary differential equations. Solving this system
amounts to simultaneously finding functions x1(t) and x2(t) that satisfy eq. (3.2).

Question: How do we go about solving the equation ẋ = Aix?

The standard technique for solving linear ODEs involves finding the eigenvalues
and eigenvectors of the matrix A. ‘Recall’ the following

Definition 3.2. An eigenvalue λ of an n×n matrix A is a complex number λ such
that the following is satisfied

Av = λv
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where v is some non zero vector in Cn called an eigenvector.

This equation has a solution if and only if the matrix A − λI (with I being the
n× n identity matrix) is singular, that is if and only if

ρ(λ) := det (A− λI) = 0.

Definition 3.3. The polynomial ρ(λ) is an nth degree polynomial in λ and is called
the characteristic polynomial of A.

Theorem 3.1 (The Fundamental Theorem of Algebra). The characteristic polyno-
mial ρ(λ) of an n × n matrix A has exactly n complex roots, counted according to
their algebraic multiplicity.

‘Recall’ the following definition:

Definition 3.4. The algebraic multiplicity of an eigenvalue λ is the largest integer
k such that the characteristic polynomial can be written ρ(r) = (r− λ)kq(r), where
q(λ) 6= 0. If λ is an eigenvalue of algebraic multiplicity equal to 1, it is called a
simple eigenvalue.

We also have:

Definition 3.5. The number of linearly independent eigenvectors corresponding to
the eigenvalue λ is called the geometric multiplicity of the eigenvalue.

You might remember the following

Proposition 3.1. The geometric multiplicity of an eigenvalue is always less than
or equal to its algebraic multiplicity.

Proof. DIY. �

Example 3.2. To find the eigenvalues of the matrix A1 described above we take
the determinant of A1 − λI and find the roots of the characteristic equation

ρ(λ) =

∣∣∣∣−4− λ −2
1 −1− λ

∣∣∣∣ = λ2 + 5λ+ 6 = (λ+ 2)(λ+ 3)

Setting ρ(λ) equal to zero and solving for λ we conclude that the eigenvalues are
λ1 = −2 and λ2 = −3. To find the eigenvectors, we substitute in the eigenvalues
λ1 = −2 and λ2 = −3 for λ and find the kernel (null space) of A− λI. Writing this
out explicitly gives(

−4 + 2 −2
1 −1 + 2

)
=

(
−2 −2
1 1

)
and

(
−4 + 3 −2

1 −1 + 3

)
=

(
−1 −2
1 2

)
which have kernels spanned by

v1 =

(
1
−1

)
and v2 =

(
2
−1

)
.

The reason that we are interested in finding the eigenvalues and the eigenvectors
is that they enable us to find ‘simple’ (and eventually all) solutions to ẋ = Ax.
Suppose that v is an eigenvector of the matrix A corresponding to the eigenvalue λ.
Now consider the vector of functions x(t) = c(t)v, where c(t) is some scalar valued
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function of t that we’ll determine later. If we suppose that x(t) solves eq. (3.1), that
is ẋ(t) = Ax(t), then we must have

ċ(t)v = Ac(t)v = c(t)Av = c(t)λv

As v is nonzero, this means that c(t) must satisfy ċ(t) = λc(t). But we can solve this
equation! We have that c(t) = eλt, and we get a solution to our original equation,
eq. (3.1), namely x(t) = eλtv.

Remark. A quick aside here. What we just did - guess at a simple form of a solution
and plug it in and see where that leads us - is a fairly common technique in the
study of differential equations. Such a guess-solution is called an ansatz, a word of
German origin (Google tells me it means ‘approach’ or ‘attempt’), and we will come
back to using them (ansatzes) whenever they are useful.

Example 3.3. Returning to our example with A1, we have, for each linearly inde-
pendent eigenvector, an eigensolution:

x1(t) = e−2tv1 =

(
e−2t

−e−2t

)
and x2(t) = e−3tv2 =

(
2e−3t

−e−3t

)
.

Continuing on, we have that v1 and v2 form a linearly independent basis of eigen-
vectors of R2 (why?), and as our map f from eq. (2.1) earlier is linear (remember
it’s the matrix A1), we have that if x1(t) is a solution, and x2(t) is a solution, then
so is, by superposition and scaling, c1x1(t) + c2x2(t) for any constants c1 and c2.
This means in particular, that our solution space (the set of all solutions) contains
a vector space! Besides being pretty cool in its own right, this also enables us to
write down solutions to ẋ = Ax in the following (matrix) way:

(3.3) x(t) =

(
e−2t 2e−3t

−e−2t −e−3t

)(
c1

c2

)
.

The other nice thing about this formulation (that we’ll prove in a week or so) is that
this enables us to write all of the solutions to ẋ = Ax. That is, our solution space
not only contains this 2-dimensional vector space, that is all it contains.

It turns out that the process we just used in Example 3.3 generalises very nicely
for almost all (whatever that means) n× n matrices.

4. Diagonalization and the Exponential of a Matrix

Suppose that A is an n×nmatrix with complex entries. The goal of this subsection
is to understand what is meant by the following:

(4.1) eA.

In terms of matrices, this is pretty straightforward and goes basically exactly how
you would expect it to go. First the technical definition:

Definition 4.1. Suppose that A is an n × n matrix with real entries. Then we
define (purely formally at this point) the exponential of A denoted exp(A) or eA by

exp(A) = eA := I + A+
1

2
A2 +

1

6
A3 +

1

4!
A4 + . . . =

∞∑
k=0

1

k!
Ak.
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Why is this definition defined only purely formally? Well, for starters, we don’t
even know if it converges in each entry. IF it does, then it is straightforward to see
that eA is an n× n matrix itself. We’ll start by describing a large class of matrices
for which it is easy to see that eA exists (that is, we have convergence in each of
the entries), and in the process, learn (in theory anyway) how to compute it for
relatively small matrices. In any case, we’ll tackle some of the theory and see what,
if anything, we can get out of it.

Remark. Computing eA becomes pretty tricky (even if you know that it exists) as
the size of A increases - actually even for relatively small matrices. There are quite a
few reasons for this. There is a seminal work on the matter called Nineteen Dubious
Ways to Compute the Exponential of a Matrix, by C. Moler and D. van Loan and a
famous update on it twenty-five years later.

We’re going to begin with a hypothesis that makes our task tractable. It is
important to note that what follows will most emphatically not work for any old
matrix! That is why I am putting the hypothesis in a separate box.

Hypothesis:
Suppose that our n× n matrix A had a set of n linearly independent
eigenvectors. (The same n as the size of the matrix).

If we denote the eigenvectors of our matrix A by v1,v2, . . . ,vn, we can form a
matrix whose columns are the eigenvectors of A. Denoting this matrix by P we
have:

P :=

 | | |
v1 v2 . . . vn
| | |

 .

Now for each vi we have that Avi = λivi for the appropriate eigenvalue λi. Putting
this together with our definition of P and the rules of matrix multiplication we have

AP =

 | | |
Av1 Av2 . . . Avn
| | |

 =

 | | |
λ1v1 λ2v2 . . . λnvn
| | |



= P


λ1

λ2

. . .
λn

 = Pdiag (λ1, λ2, . . . , λn) =: PΛ,

where we have denoted the diagonal matrix with entries λi as diag (λ1, . . . , λn) and
also as Λ, mostly because it will be convenient for writing later on.

To reiterate, provided the matrix A has enough linearly independent
eigenvectors, then we can change basis and write

(4.2) AP = PΛ

where Λ is a diagonal matrix with entries equal to the eigenvalues of the matrix A.
Now, since the vectors v1, . . . ,vn are linearly independent, we have that the matrix

P is invertible. This means that we can rewrite eq. (4.2) as

(4.3) P−1AP = Λ.
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Definition 4.2. A matrix A that can be written in the form (equivalent to eq. (4.3))

(4.4) A = PΛP−1

where P is an invertible matrix and Λ is a diagonal matrix is called (for obvious
reasons) diagonalizable or (for less obvious reasons) semisimple.

Let’s see what happens if we (formally) take the exponent of each side of eq. (4.3).
We’ll begin with the right hand side of eq. (4.3).

exp(Λ) = eΛ = I + Λ +
1

2
Λ2 +

1

6
Λ3 + · · ·+ 1

k!
Λk + · · ·

=
∞∑
k=0

1

k!
Λk

=


1 + λ1 + · · ·+ 1

k!
λk1 + · · ·

. . . 0
0 . . .

1 + λn + · · ·+ 1
k!
λkn + · · ·


which you might recognize as

eλ1

eλ2

. . .

eλn

 = diag
(
eλ1 , eλ2 , . . . , eλn

)

So what we’ve just shown is that the exponent of a diagonal matrix

(1) always exists, and
(2) consists of e to the entries of the matrix.

What about the left hand side of equation (4.3)? Well, let’s write it out and see
what we get:

eP
−1AP = I + P−1AP +

1

2
(P−1AP )2 +

1

3!
(P−1AP )3 + · · ·

= I + P−1AP +
1

2
P−1APP−1AP +

1

3!
P−1APP−1APP−1AP + · · ·

= P−1

(
I + A+

1

2
A2 +

1

3!
A3 + · · ·

)
P

= P−1eAP.

Now equating these two sides and rearranging gives us what we were after in the
first place

(4.5) eA = PeΛP−1
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Example 4.1. Let’s compute an example using the matrix A1 from above. We
have that

A1 =

(
−4 −2
1 −1

)
with P =

(
1 2
−1 −1

)
so P−1 =

(
−1 −2
1 1

)
and Λ =

(
−2 0
0 −3

)
.

Now eΛ is easy to compute. It is just diag (e−2, e−3). So we can compute eA1 exactly
by using formula (4.5)

eA1 = PeΛP−1 =

(
1 2
−1 −1

)(
e−2 0
0 e−3

)(
−1 −2
1 1

)
which, when the dust settles gives

eA1 =

(
2e−3 − e−2 2e−3 − 2e−2

−e−3 + e−2 −e−3 + 2e−2

)
.

Returning to the theory, what eq. (4.5) has just shown is

Theorem 4.1.

(1) If the n×n matrix A is diagonalizable, (i.e. there are enough linearly indepen-
dent eigenvectors), definition 4.1 is well-defined. That is, every element in
the matrix eA converges, provided A has enough linearly independent eigen-
vectors.

(2) If the n×n matrix A is diagonalizable, the eigenvectors of the matrix eA are
the same as those of A and further the eigenvalues of eA are just eλi, the
eignevalues of A raised to the power e.

Question. Wait, what? Did we really just show Theorem 4.1 part (2)? Yes we did
- prove this.

Okay so, we have a condition in our theorem, the ‘provided the matrix A is
diagonalizable’ part.

Definition 4.3. An n×n matrix A is called defective if it has less than n linearly in-
dependent eigenvectors. That is, if it has an eigenvalue whose algebraic multiplicity
is strictly greater than its geometric multiplicity.

Questions. How severe of a restriction is this? Are there a lot of matrices that
have ‘enough’ linearly independent eigenvectors? Does eA exist if A is defective? If
it does, is it possible to compute eA?

It turns out that being semisimple isn’t that bad of a restriction, and moreover,
it doesn’t matter anyway. So the answer to all three questions is positive. ‘A lot’ of
matrices are diagonalizable, but it doesn’t matter since you can compute eA for all
n× n matrices A.

As a way to answering the first question we consider the following proposition.

Proposition 4.1. If λ1 and λ2 are distinct eigenvalues of a matrix A with corre-
sponding eigenvectors v1 and v2 respectively, then v1 and v2 are linearly independent.
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Proof. Suppose for distinct eigenvalues λ1 6= λ2, we had a dependence relation on
the corresponding eigenvectors. So we had some nonzero constants k1 and k2 such
that

(4.6) k1v1 + k2v2 = 0

Suppose, without loss of generality that k2 6= 0. Applying A to both sides of eq. (4.6)
gives

(4.7) Ak1v1 + Ak2v2 = k1λ1v1 + k2λ2v2 = 0

and multiplying both sides of eq. (4.6) by λ1 gives

(4.8) k1λ1v1 + k2λ1v2 = 0.

Subtracting eq. (4.8) from eq. (4.7) gives

(4.9) (λ2 − λ1)k2v2 = 0.

but this means that λ2 = λ1, a contradiction, proving the proposition. �

Why does this proposition give some insight into the answer to the question of how
many defective matrices are there? Well, it tells us that if we have n distinct eigen-
values λ1, . . . , λn, then we’ll have n linearly independent eigenvectors v1, . . . ,vn.
But the eigenvalues are the roots of the characteristic polynomial - indeed we can
always write the characteristic polynomial as

ρ(x) = (x− λ1)(x− λ2) · · · (x− λn),

with perhaps some λis repeated according to their multiplicity. If we assume there
aren’t any eigenvalues with multiplicity greater than 1, then a partial answer to our
question is found in the answer to the following: “how many polynomials of degree
n have n distinct (and hence simple) roots?” The answer is “most of them” although
this is sort of difficult at this point to make precise, but we can explore it a little
through the example of 2× 2 matrices.

Example 4.2. The space of 2×2 matrices with real coefficients is four dimensional
and a general matrix can be written

A =

(
a b
c d

)
with a, b, c, d being unknown. The characteristic polynomial for a general 2 × 2
matrix is given by

ρ(λ) = λ2 − (a+ d)λ+ ad− bc
and so you notice that coefficients of the polynomial are the trace of A which we
will denote as τ and the determinant, which we’ll denote as δ. Now the question
of how many defective 2 × 2 matrices are there is reduced to that of how many
polynomials of the form x2 − τx + δ have multiple roots (actually this will just be
an upper bound, as we know that a characteristic polynomial of a matrix can have
multiple roots, but the matrix might not be defective). The roots of ρ(λ) are given
by the quadratic formula (sing the song):

λ± =
τ ±
√
τ 2 − 4δ

2
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and you can see that the only way we can have multiple roots of the polynomial
ρ(x)is if τ 2− 4δ = 0. So how often does this occur? Well, there are a couple of ways
to think about it.

The first way is to consider this equation in (τ, δ) space. We see right away that
this is the equation of a parabola - so we have a (one dimensional) curve in (τ, δ)
space (which is 2-dimensional) - that isn’t very many. In terms of matrices, this
means that so long as the trace and determinant stay away from this curve, then
we’re fine - our matrix isn’t defective. Since ‘most’ values of τ and δ don’t lie on
this curve, we can infer that ‘most’ matrices aren’t defective, and therefore ‘most’
2× 2 matrices are diagonalizable. See Figure 1 below.

Figure 1. A plot of the curve τ 2 = 4δ in the (τ, δ) plane. 2 ×
2 matrices with trace and determinant values not on the parabola
have distinct eigenvalues, and hence their eigenvectors form a linearly
independent set of R2, and hence they are diagonalizable.

The second way is to go back to the coefficients of the matrices themselves, and
look at the equation relating τ and δ in terms of these. This gives

0 = τ 2 − 4δ = (a+ d)2 − 4(ad− bc) = a2 + 2ad+ d2 − 4ad+ 4bc = (a− d)2 + 4bc,

which is a single equation in the variables a, b, c, d. What this equation does, is it
carves out a 3-d ‘hypersurface’ in the 4-d space of 2×2 matrices. Since ‘most’ of the
2× 2 matrices will avoid this surface, we conclude that ‘most’ of the 2× 2 matrices
are diagonalizable.

Question. By the way, this is only part of the story. It is certainly possible for
a matrix to have multiple eigenvalues, but linearly independent eigenvectors. The
question now, is on this τ 2 − 4δ = 0 curve or the (a − d)2 + 4bc hypersurface, how
many (is it ‘most’ or not) of the matrices are defective? (We will answer this later).
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Now, let’s move on to showing that needing enough eigenvectors doesn’t matter.
That is, every matrix A has an exponential eA. In order to do this, we need a few
things. First recall the following

Definition 4.4. Suppose A and B are two n × n matrices. We say that A and B
commute if AB = BA or, equivalently, AB −BA = 0.

Next is the proposition,

Proposition 4.2. If A and B are n× n commuting matrices, then

(4.10) e(A+B) = eAeB.

Proof. In principle, we should add the caveat ‘provided both sides of the equation
exist’ although this is not really necessary for a couple of reasons. The first is that
we shall see soon enough that an exponential exists for all n×n matrices. Secondly,
since this proof is purely formal algebraic manipulation, we can (sort of) say the
statement of the proposition, even if the matrices didn’t converge (though we’d
definitely need to be careful to say that this was only a formal equivalence). In any
case, the proof is by direct computation and manipulation:

e(A+B) = I + (A+B) +
1

2
(A+B)2 +

1

3!
(A+B)3 + · · ·

= I + (A+B) +
1

2
A2 +

1

2
AB +

1

2
BA+

1

2
B2 +

1

3!
A3 + · · ·

= I + A+B +
1

2
A2 + AB +

1

2
B2 +

1

3!
A3 +

1

2
A2B +

1

2
AB2 + · · ·(∗)

because AB = BA.
Now we write out the right hand side of eq. (4.10) and repeatedly use the fact

that AB = BA:

eA = I + A+
1

2
A2 +

1

3!
A3 + · · · and eB = I +B +

1

2
B2 +

1

3!
B3 + · · ·

eAeB =

(
I + A+

1

2
A2 +

1

3!
A3 + · · ·

)(
I +B +

1

2
B2 +

1

3!
B3 + · · ·

)
= I + (A+B) +

(
1

2
A2 + AB +

1

2
B2

)
+

(
1

3!
A3 +

1

2
A2B +

1

2
AB2 + · · ·

)
+ · · ·

which is the same as (∗). �

It is worth noticing that you really do need the fact that AB = BA. Almost any
pair of noncommuting matrices will not satisfy the equation eA+B = eAeB.

It is also interesting (maybe) to have a look at the converse. That is, suppose that
eAeB = e(A+B) for some n×n matrices A and B, does that mean that AB−BA = 0
(or that [A,B] = 0 to use the commutator notation)? The short answer is ‘no’,
although the full answer is a bit less clear. We have the following counterexample
to the converse of Proposition 4.2.

Example 4.3. Let A =

(
0 0
0 2πi

)
where i =

√
−1 is the complex number with

positive imaginary part whose square is −1. Then let B =

(
0 1
0 2πi

)
. It is pretty
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straightforward to see that eA = eB = e(A+B) = I, however we have that AB =(
0 0
0 −4π2

)
, while BA =

(
0 2πi
0 −4π2

)
.

Example 4.4. It is easy enough to construct real examples if we want. Let

A =


0 0 0 0
0 0 0 0
0 0 0 −2π
0 0 2π 0

 B =


0 0 1 0
0 0 0 1
0 0 0 −2π
0 0 2π 0


Then you can verify for yourself that eAeB = e(A+B) but that AB 6= BA.

Example 4.5. Here is another, slightly more complicated example. Suppose that
we define A and B as the following

A =

(
a 0
0 b

)
, a 6= b B =

(
0 1
0 0

)
.

We can directly compute

eA =

(
ea 0
0 eb

)
, eB =

(
1 1
0 1

)
, and eA+B =

(
ea ea−eb

a−b
0 eb

)
.

So we will have that eAeB = eA+B when we can find a, b such that

(a− b)ea = ea − eb.
If we set x = (a− b), this means that we must solve x = 1−e−x. There are plenty of
(complex) nonzero solutions to this which you can find using your favourite computer
software package. (I used Mathematica and got x ≈ −6.60222− 736.693i.)

To summarise what we have said so far:

(1) [A,B] = 0⇒ eAeB = eA+B Always (Proposition 4.2).
(2) eAeB = eA+B ⇒ AB −BA = 0 No.

The question then becomes: what other property can you put on the matrices A
and B to change the second point to a ‘yes’? One such property is the following

Proposition 4.3. Suppose that A and B are real, symmetric (that is AT = A) n×n
matrices, then eAeB = eA+B ⇒ [A,B] = 0.

The only proofs that I can find to this proposition are beyond the scope of this
course, but it might be an interesting problem to try and prove this yourself, using
what you know.

The condition that A and B be real, symmetric matrices is quite a strong one, and
we would like to know if there is a weaker condition that we might apply that would
also make the second statement (or the converse of proposition 4.2) true. The answer
to this is (I believe) an open problem. Indeed, it is not even clear to me whether
or not the converse is true for real 2 × 2 matrices. That is, consider the following:
Suppose A and B are real 2×2 matrices, then does eAeB = eA+B ⇒ AB−BA = 0?
In all of the 2 × 2 counterexamples to Proposition 4.2 we had, our matrices had
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complex entries, so it is conceivable that requiring the matrices to be real would
mean that eAeB = eA+B ⇒ AB −BA = 0 (though I know of no proof of this).

Continuing on:

Definition 4.5. A matrix is called nilpotent if some power of it is 0. The smallest
(integer) power of a nilpotent matrix is called its degree of nilpotency (or sometimes
just its nilpotency.

Example 4.6. For example in the following matrix

N =

0 1 0
0 0 1
0 0 0

 N2 =

0 0 1
0 0 0
0 0 0

 and N3 = 0.

This means that the (formal) exponential series for the matrix N stops after a finite
(here 3) number of steps. We have eN = I +N + 1

2
N2, or

eN =

1 0 0
0 1 0
0 0 1

+

0 1 0
0 0 1
0 0 0

+
1

2

0 0 1
0 0 0
0 0 0

 =

1 1 1
2

0 1 1
0 0 1

 .

We now are going to appeal to a theorem from linear algebra that will guarantee
us the ability to take the exponential of any matrix.

Theorem 4.2 (Jordan Canonical Form). If A is an n × n matrix with complex
entries then there exists a basis of Cn and an invertible matrix B consisting of those
basis vectors such that the following holds:

B−1AB = S +N

where the matrix S is diagonal and the matrix N is nilpotent and upper (or lower)
triangular. Further SN −NS = 0, that is S and N commute.

We’re not going to prove this, and for the moment, it doesn’t tell us anything
about how to compute the basis B. Later we’re going to develop another algorithm
in order to compute the exponential of a matrix, but in performing said algorithm
we may (and often will) bypass the Jordan Canonical form. I just wanted to include
this theorem so that one, you could see it, and two so that we see more directly why
you can take the exponential of any matrix.

Given the statement of the theorem, we can now write down the exponential of
any matrix A,

eA = BeSeNB−1,

and since the right hand side converges (we’ve shown this), we must have that it is
equal to the left hand side. (We effectively use this theorem to define the exponential
of our defective matrices.) It is actually possible to show that the exponential of a
matrix A exists for any A without this theorem, however, I wanted you to know this
theorem, (some of you may come across it in a higher linear algebra class but it is
really a fundamental theorem of linear algebra, so everyone should be exposed to it
at least once).
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Example 4.7. Now that we have the exponential of any matrix, we can consider
the matrix eAt, where t is some real number. This is just defined by the series that
you would expect, and keeping track of the fact that A is a matrix and t is a scalar.

eAt = I + At+
t2

2
A2 +

t3

3!
A3 + · · ·

When t = 1 this is just the original exponential series for eA. We have that eAt

makes sense for all t and all n× n matrices A, and so for any fixed n× n matrix A,
we have a map eAt : R→Mn from the reals to the space of n×n matrices. Further,
we have for any other s ∈ R we can write AtAs = AsAt, so we have that

eAteAs = eAt+As = eA(t+s).

In fact, we have that eAt is invertible for all matrices A and all real t - can you show
this?

5. Complex Eigenvalues

To begin the section on complex eigenvalues, let us consider a couple of useful
examples.

Example 5.1. Let J be the 2× 2 matrix given by J =

(
0 −1
1 0

)
. It is not hard to

show that J2 = −I, J3 = −J and J4 = I. Using these facts we can directly compute
that

eJt = I
∞∑
m=0

(−1)mt2m

(2m)!
+ J

∞∑
m=0

(−1)mt2m+1

(2m+ 1)!

=

(
cos t 0

0 cos t

)
+

(
0 − sin t

sin t 0

)
=

(
cos t − sin t
sin t cos t

)
which some of you might recognize as a rotation matrix of the plane by t degrees.
The matrix J is the matrix representation of the complex number i =

√
−1 and the

above formula is the 2 × 2 matrix analog of the theorem eit = cos t + i sin t. We
explore this idea further in the following example.

Example 5.2. The matrix representation of the number i by the matrix J can be
extended to consider the entire complex plane. That is, for each complex number
z = x + iy we define a 2 × 2 matrix Mz, and we will have that multiplication and

addition are preserved. For each z ∈ C define the matrix Mz by Mz :=

(
x −y
y x

)
=

xI + yJ . Then it is straightforward to check that if z1 = x1 + iy1 and z2 = x2 + iy2,
then we have that Mz1 + Mz2 = Mz1+z2 . Further (and you should do this yourself)
it is easy to see that Mz1Mz2 = Mz1z2 = Mz2z1 = Mz2Mz1 . We also claim that

Mez = eMz =

(
ex cos y −ex sin y
ex sin y ex cos y

)
for all z ∈ C. This is easily established by the
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previous assertions and fact that xI and yJ commute. We have

Mez = MexMeiy = exIeyJ = exI+yJ = eMz .

This is pretty remarkable, but it also means that we can take the matrix exponent
of matrices like Mz fairly easily. An intuitive reason for this is that we just have
multiplication and addition in the original definition of matrix exponents, and com-
mutativity of the matrices I and J . Thus we have that ez = ex(cos y + i sin y) =
ex cos y + iex sin y.

A few more things to note about this representation of complex numbers:

(1) Mz̄ =

(
x y
−y x

)
= MT

z , i.e. complex conjugation behaves as you would

expect.
(2) If r is a real number Mr = rI. This was used in the derivation of Mez but I

wanted to make it explicit here.
(3) If ir is a purely imaginary number then Mir = rJ.
(4) MzMz̄ = M|z|2 = |z|2I.
(5) We have that det(Mz) = |z|2. The determinant give us a norm that we can

use on our complex numbers.
(6) Mz is invertible and the inverse is given by M 1

z
= M z̄

|z|2
= 1

det(Mz)
Mz̄ =

1
det(Mz)

MT
z .

Some of these might come in handy later on.

In Example 5.1 we looked at Jt =

(
0 −t
t 0

)
and computed eJt by using the map

to the complex numbers and by using the power series of the exponential. Now
we’re going to compute it using the diagonalization procedure that was outlined in
Section 4. The eigenvalues of Jt are λ = ±it where i =

√
−1 and the eigenvectors

are

(
±i
1

)
respectively. So our matrix of eigenvectors is P =

(
i −i
1 1

)
. Further it is

pretty straightforward to see that P−1 = 1
2i

(
1 i
−1 i

)
. Lastly we set Λt =

(
it 0
0 −it

)
,

the matrix of eigenvalues. So we have that

eJt = PeΛtP−1 =
1

2i

(
i −i
1 1

)(
eit 0
0 e−it

)(
1 i
−1 i

)
=

(
eit+e−it

2
− eit−e−it

2i
eit−e−it

2i
eit+e−it

2

)
=

(
cos t − sin t
sin t cos t

)
.

Which is exactly what we got before (this is good). Now we remark that J is real,
and for real t, so is Jt, so if we just plug it into the series for the exponential, then
we are simply manipulating real matrices, with real steps. But the way we just did
it requires a complex intermediate step. Evidently this is not maximally desirable.
What we will be working towards now is a real normal form for a matrix of a linear
transformation.

Suppose that A is a real n× n matrix. Then the characteristic polynomial of A,
which we denote here by ρ(λ) = det(A − λI) will only have real coefficients, so in
particular if λ = a+ ib with a, b ∈ R is an eigenvalue of A, then so is λ̄ = a− ib. The
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other thing to notice here is that eigenvectors will also come in complex pairs, and
moreover by taking the complex conjugate, the eigenvector corresponding to λ̄ will
be the complex conjugate of the eigenvector of λ. That is if Av = λv, then Av̄ = λ̄v̄.
Now suppose that v = u + iw with u,w ∈ Rn is your complex eigenvector. Then
we have that 2u = v + v̄, and so we can show that

A2u = Av + Av̄ = λv + λ̄v̄ = 2(au− bw)

So in particular Au = (au− bw). Likewise, you can show that Aw = bu+aw. Now

we set P to be the n×2 matrix P =

 | |
u w
| |

, and we have that AP = P

(
a b
−b a

)
.

This follows exactly what we did in the diagonalization procedure, except it allows
us to find a ‘normal form’ for a real matrix with complex eigenvalues without a
complex intermediate step. It should also be noted here that we have only done this
really for 2 eigenvectors, but really find the exponential of a matrix, we need to do
this for a ‘full set’. We’ll do an example first, and then some generalisations.

Example 5.3. Let’s define the matrix

A =

 1 1 0
−1 1 1
0 −1 1


We will compute eA and eAt. We have that the eigenvalues of A are 1± i

√
2 and 1

with corresponding eigenvectors v1,2 =

 −1

∓i
√

2
1

 and v3 =

1
0
1

. This means that

u =

−1
0
1

 and w =

 0

−
√

2
0

, and so our change of basis matrix is P = [u,w,v3].

We have P =

−1 0 1

0 −
√

2 0
1 0 1

, and you can also check that P−1 =
1

2
P . Next, we

consider the matrix Λ := P−1AP . We can see straight away that

P−1AP = Λ =

 1
√

2 0

−
√

2 1 0
0 0 1


Let’s pause here for a notational bit. The matrix Λ is in what is called block
diagonal form. Another (short-hand) way of writing this is the following. Let

Λ1 :=

(
1

√
2

−
√

2 1

)
, and Λ2 := 1 (the 1× 1 identity matrix), then Λ = Λ1 ⊕ Λ2.

Remark. A note of caution - this symbol is often used in a different context in
linear algebra as well - to denote the direct sum of two vector spaces. That is, if

E1 is the vector subspace of R3 spanned by the vector

1
0
0

 and E2 is the vector
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subspace of R3 spanned by the vector

0
0
1

, then E1 ⊕E2 in this context would be

the 2D subspace that consists of the (x, z) plane. The context should always make
it clear whether we are talking about the direct sum of vector spaces or of matrices,
but this remark is just to warn you to be careful until you’re more familiar with
what’s going on.

Returning to our example, we have (in terms of matrices) Λ = Λ1 ⊕ Λ2. The
reason it is convenient to write it like this is the following proposition.

Proposition 5.1. Suppose an n×n matrix A can be written in block diagonal form
A = B ⊕ C, then eA = eB ⊕ eC .

Proof. We note that A = B⊕C means that A =

(
B 0
0 0

)
+

(
0 0
0 C

)
and that these

last matrices commute. This means that eA can be written as the products of the
exponents of these two matrices. Writing this out we have

eA =

(
eB 0
0 I

)(
I 0
0 eC

)
= eB ⊕ eC

�

Okay, so we can now apply Proposition 5.1 to Λ and get that eΛ = eΛ1 ⊕ eΛ2 , and
likewise eΛt = eΛ1t ⊕ eΛ2t. Now eΛ2t = et. Pretty easy. To find out what eΛ1t is, we
can either compute it directly (perhaps best if we’re working in a vacuum) or we
can notice that Λ1t = It−

√
2Jt and that these matrices commute. So we can apply

our results from the previous example to get that eΛ1 = et
(

cos
√

2t sin
√

2t

− sin
√

2t cos
√

2t

)
.

So, putting this all together we have that

eΛt = et

 cos
√

2t sin
√

2t 0

− sin
√

2t cos
√

2t 0
0 0 1

 ,

which is real as we expected, and we got without a complex valued intermediate
step. If we want to know what eAt is then we need to change back to our original
basis. That is we have eAt = PeΛtP−1. This I will let you do yourselves as it is a
bit messy should probably be done in Matlab or Mathematica.

We can now generalise this procedure. Suppose that you have n eigenvalues, of
which the first 2k are complex. Write these as λ1 = a1 + ib1, λ̄1 = a1 − ib1, . . . λk =
ak + ibk, λ̄k = ak − ibk, and the last n− 2k of which are real λ2k+1, . . . λn. Suppose
too that we have the associated eigenvectors v1, v̄1, . . . ,vkv̄k,v2k+1 . . .vn, and for
the complex eigenvectors we have vj = uj + iwj. Then we can define the matrix P
as follows

P =

 | | | | | | | |
u1 w1 . . . uk wk v2k+1 . . . vn
| | | | | | | |

 .
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Then (you might want to check this out for yourself) we have that

Λ := P−1AP =

(
a1 b1

−b1 a1

)
⊕
(
a2 b2

−b2 a2

)
⊕ · · · ⊕ diag (λ2k+1, . . . , λn) .

This, with some straightforward manipulation of matrices, gives us a formula for
eAt. We have that

eAt = PeΛtP−1.

Example 5.4. Let’s do another example. Consider the matrix

A =


7 1 4 −8
3 3 6 −6
2 −4 8 −4
6 0 0 0

 .

Let’s compute eA and eAt. The eigenvalues of A are λ1, λ̄1 = 6±6i and λ2, λ̄2 = 3±3i
and with eigenvectors v1v̄1 = (1 ± i, 1 ± i,±i, 1) and v2, v̄2 = (1 ± i, 1 ∓ i, 2, 2)
respectively. Thus we have that a1 = b1 = 6 and a2 = b2 = 3. We also have that
u1 = (1, 1, 0, 1) and w1 = (1, 1, 1, 0) while u2 = (1, 1, 2, 2) and w2 = (1,−1, 0, 0).
We set

P =


1 1 1 1
1 1 1 −1
0 1 2 0
1 0 2 0

 =

 | | | |
u1 w1 u2 w2

| | | |

 ,

and so

P−1 =
1

6


2 2 −4 2
2 2 2 −4
−1 −1 2 2
3 −3 0 0

 .

Thus we have that

Λ = P−1AP =


6 6 0 0
−6 6 0 0
0 0 3 3
0 0 −3 3

 = Mλ̄1
⊕Mλ̄2

.

So finally, putting this all together, we have eA = PeΛP−1 where

eΛ = eMλ̄1
⊕Mλ̄2 = eMλ̄1 ⊕ eMλ̄2 = Meλ̄1 ⊕Meλ̄2

= e6

(
cos(6) sin(6)
− sin(6) cos(6)

)
⊕ e3

(
cos(3) sin(3)
− sin(3) cos(3)

)
.

To find eAt use the fact that the eigenvalues of At are the eigenvalues of A multiplied
by t and the eigenvectors are the same. Thus Λt = P−1AtP and eAt = PeΛtP−1

where

eΛt = e6t

(
cos 6t sin 6t
− sin 6t cos 6t

)
⊕ e3t

(
cos 3t sin 3t
− sin 3t cos 3t

)
.
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6. Multiple/Repeated Eigenvalues

In this section, we are going to tackle the last remaining challenge; what to do
when A has repeated eigenvalues, and not enough linearly independent eigenvectors.
To do this, we need the following definition.

Definition 6.1. Suppose that λj is an eigenvalue of a matrix A with algebraic
multiplicity nj. Then we define the generalised eigenspace of λj as

Ej := ker [(A− λjI)nj ] .

There are basically two reasons why this definition is important. The first is that
these generalised eigenspaces are invariant under multiplication by A. That is if
v ∈ Ej for some generalised eigenspace, of our matrix A then Av is as well.

Proposition 6.1. Suppose that Ej is a generalised eigenspace of the matrix A, then
if v ∈ Ej so is Av.

Proof. Suppose v ∈ Ej for some generalised eigenspace for some eigenvector λ. Then
v ∈ ker(A− λI)k say for some k. Then we have that (A− λI)kAv = (A− λI)k(A−
λI + λI)v = (A− λI)k+1v + (A− λI)kλv = 0. �

The second reason that we care about this is that it will turn out that this will
give us a full set of linearly independent (generalised) eigenvectors, which we can
use to decompose our matrix A. I am going to write this in a very general sense,
but if you like, below, where it says T for linear transformation, you should think
‘matrix’ and where it says V for vector space, you can think Cn (or Rn, but you
have to be a little careful about what you mean by ‘eigenspace’ in this instance).

Theorem 6.1 (Primary Decomposition). Let T : V → V be a linear transfor-
mation of an n dimensional vector space over the complex numbers. Suppose that
λ1, λ2, . . . , λk are the distinct eigenvalues (k is not necessarily equal to n). Let Ej
be the generalised eigenspace corresponding to the eigenvalue λj. Then dim(Ej) =
the algebraic multiplicity of λj and the generalised eigenvectors span V . That is, in
terms of vector spaces we have

V = E1 ⊕ E2 ⊕ · · · ⊕ Ek
The proof of the previous theorem can be found in most texts on linear algebra.

If you are interested, let me know, and I can track down a reference for you. This
is basically what leads to the Jordan canonical form decomposition defined earlier.

Putting this together with the previous proposition, what this says is that the
linear transformation T will decompose the vector space on which it acts into the
direct sum of invariant subspaces. This is a really key idea, and we will revisit it
often.

The next thing to do is to put all of this together to explicitly determine the
semisimple nilpotent decomposition. Before, we had this matrix, Λ which was

(1) Block diagonal
(2) In a ‘normal’ form for complex eigenvalues
(3) Diagonal for real eigenvalues

So now, suppose we have a real matrix A with n (possibly complex) eigenvalues
λ1, . . . , λn now repeated according to their multiplicity. Further suppose we break
them up into the complex ones and the real ones, so we have λ1, λ̄1, λ2, λ̄2, . . . , λk, λ̄k
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complex eigenvalues and λ2k+1, . . . , λn real eigenvalues. Now let’s suppose that λj =
aj + ibj with a, b ∈ R for the complex ones (λ̄j = aj − ibj). Form the matrix

Λ :=

(
a1 b1

−b1 a1

)
⊕
(
a2 b2

−b2 a2

)
⊕ · · · ⊕

(
ak bk
−bk ak

)
⊕ diag (λ2k+1 . . . λn) .

Now let v1, v̄1, . . . ,vk, v̄k,v2k+1, . . . ,vn be a basis of Rn of generalised eigenvectors
in the appropriate generalised eigenspace. Then, for the complex ones, write vj =
uj + iwj, with u,w ∈ Rn. Form the n× n matrix

P :=

 | | | | | | | |
u1 w1 u2 w2 · · · uk wk v2k+1 · · · vn
| | | | | | | |

 .

Returning to our construction, the matrix P is invertible (because of the primary
decomposition theorem). So we can make a new matrix S = PΛP−1, and a matrix
N = A− S. We have the following:

Theorem 6.2. Let A, N , S, Λ and P be the matrices defined above, then

(1) A = S +N
(2) The matrix S is semisimple
(3) The matrices S,N and A all commute.
(4) The matrix N is nilpotent.

Proof.

(1) Follows from the definition of N .
(2) Follows from the construction of S.
(3) We show first that [S,A] = 0. Suppose that v is a generalised eigenvector

of A associated to an eigenvalue λ. Then, by construction, v is a genuine
eigenvector of S with eigenvalue λ (If v has a nonzero imaginary part, this
needs to be split up appropriately, i.e. write v = u + iw, then Su = au −
bw where λ = a + ib, and similarly for w). Further we note that as the
generalised eigenspaces are invariant under A we have that Av will be a
genuine eigenvector of S with eigenvalue λ too. Next apply [S,A] to v to get
[S,A]v = SAv− ASv = λAv− Aλv = 0. Now every element of Rn can be
written (uniquely) as a linear combination of the uj,wj, and vj so we can
conclude that [S,A]v = 0 for all v ∈ R. Thus [S,A] = 0. To see that N and
S commute, observe first that [S,N ] = [S,A − S] = [S,A] = 0 from before,
and so S and N commute. Lastly, A and N commute from the definition of
N and the fact that A commutes with S. This proves (3).

(4) Suppose that the maximum algebraic multiplicity of any eigenvalue of A
is m. Then for any v ∈ Ej a generalised eigenspace corresponding to the
eigenvalue λj. We have Nmv = (A − S)mv = (A − S)m−1(A − λj)v =
(A − S)m−2(A − λj)2v since [S,A] = 0, and so on and so on. So eventually
we get Nmv = (A− λj)mv = 0. Again the same argument as for (3) holds,
since the Ej’s span Rn this means that N is nilpotent.

�

Example 6.1. Compute eAt, and eA when A =

(
−1 1
−4 3

)
.
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The eigenvalues of A are 1, 1. Now we find the generalised eigenspace of λ = 1.

We have that ker (A− I)2 = ker

(
0 0
0 0

)
= R2, so we choose a basis for R2. I pick

the standard basis. Then P = I, and we have that Λ = I and S = PΛP−1 = I.

Then N = A−S =

(
−2 1
−4 2

)
is nilpotent of nilpotency 2. So we can clearly see that

A = S +N and that S is semisimple, while N is nilpotent and S and N commute.

Now we have that eAt = eSteNt =

(
et 0
0 et

)(
I +Nt

)
= et

(
1− 2t t
−4t 2t+ 1

)
. Finally

to get eA just plug in t = 1.

Example 6.2. Compute eAt and eA when

A =


5 1 −1 1
−1 5 1 −1
−1 −1 3 −1
−3 −1 1 1

 .

The eigenvalues of A repeated according to multiplicity are 4, 4, 4, and 2. The
generalised eigenspace for the eigenvalue λ = 4 is spanned by the vectors

v1 =


−1
0
0
1

 , v2 =


0
1
0
0

 , and v3 =


0
0
1
0



while the eigenspace for the eigenvalue λ = 2 is spanned by the vector v4 =


0
0
1
1

.

Letting P be the matrix of eigenvalues, we have that

P =


−1 0 0 0
0 1 0 0
0 0 1 1
1 0 0 1

 P−1 =


−1 0 0 0
0 1 0 0
−1 0 1 −1
1 0 0 1

 Λ =


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 2

 .

This means that S = PΛP−1 and N = A− S are given by

S =


4 0 0 0
0 4 0 0
−2 0 4 −2
−2 0 0 2

 N =


1 1 −1 1
−1 1 1 −1
1 −1 −1 1
−1 −1 1 −1

 .

You should verify yourself that SN −NS = [N,S] = 0. We have that

N2 =


−2 2 2 −2
0 0 0 0
0 0 0 0
2 −2 −2 2

 while N3 = 0.
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Thus we have that eAt = eSteNt = PeΛtP−1eNt. Multiplying these out we have

eSt =


e4t 0 0 0
0 e4t 0 0

−e2t (−1 + e2t) 0 e4t −e2t (−1 + e2t)
−e2t (−1 + e2t) 0 0 e2t


and

eNt =


−t2 + t+ 1 t2 + t t2 − t t− t2
−t t+ 1 t −t
t −t 1− t t

t2 − t −t2 − t t− t2 t2 − t+ 1

 .

And finally putting these all together gives eAt =
e4t (−t2 + t+ 1) e4tt(t+ 1) e4t(t− 1)t −e4t(t− 1)t

−e4tt e4t(t+ 1) e4tt −e4tt
e4t(t− 1) + e2t −e4tt −e4t(t− 1) e4t(t− 1) + e2t

e4t (t2 − t− 1) + e2t −e4tt(t+ 1) −e4t(t− 1)t e4t(t− 1)t+ e2t

 .

To find eA, set t = 1 and we have

eA =


e4 2e4 0 0
−e4 2e4 e4 −e4

e2 −e4 0 e2

e2 − e4 −2e4 0 e2

 .

Example 6.3. One last example. Compute eAt and eA when

A =


2 0 2 0
0 3 1 −2
−2 −1 1 0
0 2 0 2

 .

The eigenvalues of A are 2 ± 2i, each with algebraic multiplicity 2. We have that
ker(A− (2 + 2i)I)2 is spanned by the vectors

v1 =


−1− 4i
4 + 16i

0
17

 =


−1
4
0
17

+ i


−4
16
0
0

 = u1 + iw1 and

v2 =


−4− 16i
−1− 4i

17
0

 =


−4
−1
17
0

+ i


−16
−4
0
0

 = u2 + iw2

Thus we can write

P =


−1 −4 −4 −16
4 16 −1 −4
0 0 17 0
17 0 0 0

 P−1 =


0 0 0 1

17
− 1

68
1
17

0 − 1
68

0 0 1
17

0
− 1

17
− 1

68
− 1

68
0


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and

Λ =


2 2 0 0
−2 2 0 0
0 0 2 2
0 0 −2 2

 S = PΛP−1 =


5
2

0 2 1
2

0 5
2

1
2
−2

−2 −1
2

3
2

0
−1

2
2 0 3

2



and N = A − S =


−1

2
0 0 −1

2
0 1

2
1
2

0
0 −1

2
−1

2
0

1
2

0 0 1
2

 . Then we have that N2 = 0 and

SN −NS = 0 (which you should check for yourself). This gives eAt = eSteNt where
eSt =

e2t


cos 2t+ 1

4
sin 2t 0 sin 2t 1

4
sin 2t

0 cos 2t+ 1
4

sin 2t 1
4

sin 2t − sin 2t
− sin 2t −1

4
sin 2t cos 2t− 1

4
sin 2t 0

−1
4

sin 2t sin 2t 0 cos 2t− 1
4

sin 2t


and

eNt =


1− t

2
0 0 − t

2
0 t+2

2
t
2

0
0 − t

2
1− t

2
0

t
2

0 0 t+2
2

 .

And again to find eA substitute t = 1.

7. Wasn’t this class about ODE’s?

So now that we can take the exponential of any matrix, we’re ready to get to the
‘point’ of all this matrix exponential stuff. Consider the initial value problem

(7.1) ẋ = Ax x(0) = x0,

where A is a real n × n matrix and x0 ∈ Rn is a vector. This is exactly like every
other initial value problem you have seen before, except now it is written in matrix
form.

Theorem 7.1. The unique solution for all t ∈ R to the initial value problem (7.1)
is given by

x(t) = eAtx0.

Before proving the theorem, we introduce a useful proposition.

Proposition 7.1.

(7.2)
d

dt

(
eAt
)

= AeAt = eAtA.

We note that the second equality follows immediately from the series expansion of
eAt and the fact that At and A commute for all real t. We will prove this proposition
in two different ways.
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Proof 1. In this proof we simply write out the series expansion for eAt and differen-
tiate term by term. This gives

d

dt

(
I + At+

1

2!
A2t2 + · · ·

)
=

(
A+ A2t+

1

2!
A3t2 + · · ·

)
= A

(
I + At+

1

2!
A2t2 + · · ·

)
= AeAt = eAtA.

�

Okay, so we can technically do this (differentiate term by term) because the expo-
nential series converges uniformly (‘recall’ what this means) on any closed interval
[a, b] but strictly speaking it is dangerous to differentiate term by term in a series.
So with that in mind we’re going to present another proof which relies on the good
old limit definition of the derivative.

Proof 2. Writing out the limit definition of the derivative we have

d

dt

(
eAt
)

= lim
h→0

(
eA(t+h) − eAt

h

)
= lim

h→0

(
eAt
(
eAh − I

)
h

)

= eAt lim
h→0

(
eAh − I
h

)
= lim

h→0

1

h

(
Ah+

1

2!
A2h2 +

1

3!
A3h3 + · · ·

)
= eAt

[
lim
h→0

(
A+

1

2!
A2h+

1

3!
A3h2 + · · ·

)]
= eAtA = AeAt

This completes the second proof of the proposition. �

Proof of Theorem. Now we’re ready to prove the theorem. We have a function
x(t) = eAtx0, and from the proposition we have that ẋ(t) = AeAtx0 = Ax(t), and
clearly x(0) = x0, so we have that x(t) is a solution to the initial value problem for
all t ∈ R. Now we need to show that it is the only one. Suppose we had another
solution y(t). Then we will consider the function e−Aty(t). We claim that this
function is a constant. To see this, we have

d

dt

(
e−Aty(t)

)
= −Ae−Aty(t) + e−Atẏ(t)

= −Ae−Aty(t) + e−AtAy(t)

= −e−AtAy(t) + e−AtAy

= e−At (−Ay(t) + Ay(t))

= 0.

So we have that e−Aty(t) is a constant. Which one? Well, we just need to evaluate
it at one value, so let’s choose t = 0. Then we have e−A0y(0) = x0. Thus we have
that e−Aty(t) = x0 or y(t) = eAtx0 for all values of t ∈ R. This completes the proof
of the theorem. �

Now let’s round things out with an example:
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Example 7.1. Solve the initial value problem:

ẋ(t) =

(
2 1
1 2

)
x(t) with x0 =

(
1
0

)
.

The eigenvalues of the matrix A are λ1 = 1 with eigenvector v1 =

(
−1
1

)
and λ2 = 3

with eigenvector v2 =

(
1
1

)
. We can thus use these values to compute

eAt =
1

2

(
et + e3t e3t − et
e3t − et e3t + et

)
= e2t

(
cosh t sinh t
sinh t cosh t

)
.

That last part isn’t that important, it is just possible to deduce it from the defi-
nition of hyperbolic sine and cosine. Thus we have that the solution to the initial

value problem (by the theorem) is eAt
(

1
0

)
which is just the first column of eAt or(

e2t cosh t
e2t sinh t

)
.

We could have also taken our initial condition as

(
0
1

)
and we would have likewise

gotten the second column of eAt, which is just

(
e2t sinh t
e2t cosh t

)
. We’d subsequently

have a pair of linearly independent solutions, which means that by taking all linear
combinations of them, we have all solutions to the ODE ẋ = Ax (this follows from
Theorem 7.1). Generalising this, if we use the standard basis vector ek as our initial
condition we end up with the kth column of eAt. If we were to do this for all of these
basis vectors e1 through en, then we’d have all the columns of eAt, and moreover,
we’d have a full set of linearly independent solutions, and so we could, by taking
linear combinations of solutions, get every solution. This discussion is summed up
in the following useful corollary.

Corollary 7.1. The set of solutions to a constant coefficient ODE of order n is an
n dimensional vector space. If the coefficients are in R, then the vector space can
also be taken to be real.

Another way to think about this is the following: eAt is the solution to the n× n
matrix initial value problem

Φ̇(t) = AΦ(t)

with the matrix initial condition
Φ(0) = I.

So in this way, we’re able to write a full set of linearly independent solutions in
one go. For this reason, the matrix eAt is called the principal fundamental solution
matrix to the ODE ẋ = Ax (or to the matrix ODE Φ̇ = AΦ).

Example 7.2. Let V =

(
−1 0
0 1

)
. Consider the system of ODEs

(7.3) ÿ + V y = λy
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where λ ∈ R.
First write the second order system of ODE’s as a first order system. Let y =(
x1

x2

)
, ẏ =

(
x3

x4

)
and rewrite eq. (7.3) as

(7.4)


ẋ1

ẋ2

ẋ3

ẋ4

 =


0 0 1 0
0 0 0 1

λ+ 1 0 0 0
0 λ− 1 0 0



x1

x2

x3

x4

 =: A


x1

x2

x3

x4

 .

We will call a solution x(t) to eq. (7.4) bounded for all time if there is an M <∞
such that ||x(t)|| < M for all t ∈ R (where by ||x(t)|| we mean the usual Euclidean

norm ||x(t)|| :=

(
4∑
i=1

|xi(t)|2
) 1

2

).

Question. For what values of λ do there exist solutions to eq. (7.4) which are
bounded for all time? What is the dimension of the space of solutions which are
bounded for all time for each λ ∈ R?

(Such a value of λ if it exists is called, in an only mildly confusing abuse of language,

an eigenvalue of the (linear) operator
d2

dt2
+V.) In an effort to incorporate everything

we’ve looked at so far in this course, we are going to answer this question in two
different ways.

Answer (First Way). The first step in both ways is to compute the eigenvalues and
eigenvectors of the matrix A as functions of λ ∈ R. In order to answer this we need
to compute the fundamental solution matrix for all λ ∈ R. The eigenvalues of the
matrix A are ±

√
λ± 1 and the corresponding eigenvectors are

v1,2 =


±1
0√
λ+ 1
0

 and v3,4 =


0
±1
0√
λ− 1

 .

These will be distinct provided λ 6= ±1. For the moment, assume that this is the
case.

We then have 4 eigensolutions {y1(t),y2(t),y3(t),y4(t)} which are given by

y1(t) = et
√
λ+1


1
0√
λ+ 1
0

 ,y2(t) = e−t
√
λ+1


−1
0√
λ+ 1
0

 ,

y3(t) = et
√
λ−1


0
1
0√
λ− 1

 , and y4(t) = e−t
√
λ−1


0
−1
0√
λ− 1
0

 .

Since vj are all eigenvectors with distinct eigenvalues, Proposition 4.1 says that these
vectors are all linearly independent. We claim that this means that the yi(s) are
linearly independent as well. To see this, observe that the hypothesis of Theorem 4.1
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is satisfied, and so the vi(t) are the eigenvectors of eAt with eigenvalues e±t
√
λ±1. Now,

Corollary 7.1 says that the solution space of eq. (7.4) and equivalently eq. (7.3) is a
vector space of dimension four, and we have just shown that we have four linearly
independent solutions to eq. (7.4). Thus we must have a basis. So, we can write
any solution as a linear combination

xg(t) = k1y1(t) + k2y2(t) + k3y3(t) + k4y4(t).

Thus we will have a solution which is bounded for all time precicely when one or more
of the yi(t)

′s is bounded for all time. This will be when any of the coefficients of t in
the exponents in the eigensolutions has a zero real part. Since we are assuming that
λ ∈ R, and λ 6= ±1, this will be when λ ∈ (−∞,−1) ∪ (−1, 1). That is λ ≤ 1 (but
not equal to ±1). (Notice that when λ > 1, none of the eigensolutions are bounded
and so no solution can be). Now what about when λ = ±1? Well, if λ = −1,
then solutions y1(t) and y2(t) are no longer linearly independent. However the
eigensolutions y3(t) and y4(t) are still linearly independent and more over they are
still bounded for all time (the coefficient of t in the exponential is purely imaginary),
so when λ = −1 we have a bounded for all time solution. Now what about λ = 1?.
Again, we see that y3(t) and y4(t) are no longer linearly independent solutions,
however, they will still be bounded for all time, so again, we include λ = 1. Thus
the final answer is λ ∈ (−∞, 1].

Answer (SecondWay). Now that we know the answer, lets see how the exponential
of a matrix sheds some light on the problem. Again, we have that the eigenvalues
of the matrix A are ±

√
λ± 1 and the corresponding eigenvectors are

v1,2 =


±1
0√
λ+ 1
0

 and v3,4 =


0
±1
0√
λ− 1

 .

These will be distinct provided λ 6= ±1. For the moment again, assume that this is
the case. For notational convenience, we let µ± =

√
λ± 1. Then we have that P ,

the matrix of eigenvectors is given by

P =


1 −1 0 0
0 0 1 −1
µ+ µ+ 0 0
0 0 µ− µ−

 with P−1 =
1

2


1 0 1

µ+
0

−1 0 1
µ+

0

0 −1 0 1
µ−

0 1 0 1
µ−

 .

As per usual, we let Λ = diag (µ+,−µ+, µ−,−µ−), and then we have that the fun-
damental solution matrix to eq. (7.4) is:

eAt =


coshµ+t 0 sinhµ+t

µ+
0

0 coshµ−t 0 sinhµ−t
µ−

µ+ sinhµ+t 0 coshµ+t 0
0 µ− sinhµ−t 0 coshµ−t

 .

Now we have a full set of linearly independent solutions to eq. (7.4) (and eq. (7.3)).
If −1 < λ < 1, then µ− =

√
λ− 1 will be purely imaginary, while µ+ =

√
λ+ 1 will

be real. And if λ < −1 then µ± are both purely imaginary. Further, we can use the
identities cosh(ix) = cos(x) and sinh(ix) = i sin(x) for x ∈ R. So if −1 < λ < 1,
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then for notational convenience set ν− :=
√
−(λ− 1) (note that this is real) and

observe that eAt becomes
coshµ+t 0 sinhµ+t

µ+
0

0 cos ν−t 0 − sin ν−t
ν−

µ+ sinhµ+t 0 coshµ+t 0
0 ν− sin ν−t 0 cos ν−t

 .

So if −1 < λ < 1 we can see that two of the columns of the fundamental solution
matrix are bounded for all time, so in particular, any linear combination of them
are, and we can deduce that there is a two dimensional subspace of solutions to
eq. (7.4) (and hence eq. (7.3)) which are bounded for all time if −1 < λ < 1.

If λ < −1, then (again for notational convenience only), let’s set ν± =
√
−(λ± 1).

We note that now, both of these are real. Using the aforementioned relations between
hyperbolic sine and cosine and their trigonometric counterparts eAt becomes

cos ν+t 0 − sin ν+t
ν+

0

0 cos ν−t 0 − sin ν−t
ν−

−ν+ sin ν+t 0 cos ν+t 0
0 −ν− sin ν−t 0 cos ν−t

 .

The point is that if λ < −1 then all of the columns in the fundamental matrix
solution are bounded. So this means that if λ < −1 then all of the solutions to the
system in (7.4) (and hence to eq. (7.3)) are bounded. What about when λ = ±1?
Well, first off, the matrix P as it is written isn’t invertible when λ = ±1. And
moreover, in these cases, A has 0 as a double eigenvalue, and will be deficient.
When λ = 1, we will have that

A =


0 0 1 0
0 0 0 1
2 0 0 0
0 0 0 0


which has eigenvalues ±

√
2, 0, 0. The matrix of (now generalised) eigenvectors is

P =


1√
2
− 1√

2
0 0

0 0 1 0
1 1 0 0
0 0 0 1

 with P−1 =


1√
2

0 1
2

0

− 1√
2

0 1
2

0

0 1 0 0
0 0 0 1

 and

Λ =


√

2 0 0 0

0 −
√

2 0 0
0 0 0 0
0 0 0 0

 so S = PΛP−1 =


0 0 1 0
0 0 0 0
2 0 0 0
0 0 0 0

 ,

and we have that

N = A− S =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 SN − SN = 0 and N2 = 0.
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So we can write eAt = eSteNt and we get

eAt =


cosh

√
2t 0 sinh

√
2t√

2
0

0 1 0 0√
2 sinh

√
2t 0 cosh

√
2t 0

0 0 0 1




1 0 0 0
0 1 0 t
0 0 1 0
0 0 0 1

 .

And putting it all together we get that when λ = 1

eAt =


cosh

√
2t 0 sinh

√
2t√

2
0

0 1 0 t√
2 sinh

√
2t 0 cosh

√
2t 0

0 0 0 1

 .

Examining the columns we see that one of the columns is bounded, while three are
not. Thus we have that there is a one dimensional subspace of solutions which are
bounded for all time.

When λ = −1, the computation is pretty much the same, we have

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 −2 0 0

 ,

which has eigenvalues 0, 0,±i
√

2. The matrix of (now generalised) eigenvectors is

P =


1 0 0 0
0 0 − 1√

2
0

0 1 0 0
0 0 0 1

 with P−1 =


1 0 0 0
0 0 1 0

0 −
√

2 0 0
0 0 0 1

 and

Λ =


0 0 0 0
0 0 0 0

0 0 0
√

2

0 0 −
√

2 0

 so S = PΛP−1 =


0 0 0 0
0 0 0 −1
0 0 0 0
0 2 0 0

 .

And we have that

N = A− S =


0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 SN − SN = 0 and N2 = 0.

So we can write eAt = eSteNt and we get

eAt =


1 0 0 0

0 cos
√

2t 0 sin
√

2t√
2

0 0 1 0

0 −
√

2 sin
√

2t 0 cos
√

2t




1 0 t 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

And putting it all together we get that when λ = −1

eAt =


1 0 t 0

0 cos
√

2t 0 sin
√

2t√
2

0 0 1 0

0 −
√

2 sin
√

2t 0 cos
√

2t

 .
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Examining the columns we see that three of the columns are bounded, while one is
not. Thus we have that there is a three dimensional subspace of solutions which are
bounded for all time, and a one dimensional subspace which grows linearly. Putting
this all together, we get the same answer as in the first way (whew), namely, there
exists a bounded-for-all-time solution precisely when λ ∈ (−∞, 1].

That pretty much wraps up the quantitative study of linear constant coefficient
homogeneous first order ODE’s. They are all pretty much solvable (modulo compu-
tation of the exponential) and as such they are essentially trivial. Now we are going
to qualitatively study their behaviour.

8. Stability - the Beginnings

When we consider the constant coefficient homogenous linear system

(8.1) ẋ = Ax.

We want to answer the question “What does it mean for this linear system to be
stable?” There are a couple of answers to this. The easiest and most straightforward
to compute is the following:

Definition 8.1. We say that a constant coefficient, homogeneous linear system
eq. (8.1) (or the critical point at the origin) is spectrally stable provided that none
of the eigenvalues of A have positive real part. Otherwise we say it is spectrally
unstable.

A word about the nomenclature:

Definition 8.2. The spectrum of a matrix A is the set of eigenvalues. We denote it
by σ(A).

Remark. We remark that if eq. (8.1) is spectrally stable, then none of the solutions
to that system will grow exponentially. Further if A is diagonalizable (and as you
well know by now, this is a big ‘if’), with eigenvalues λ1, . . . λj, and eigenvectors,
v1, . . . ,vn, then you know that all solutions of ẋ = Ax are of the form

x(t) =
n∑
j=1

kje
λjvj

and we can see that |x(t)| ≤ |x(0)| for all t > 0. So the solution will stay ‘near’ to
where it starts.

We now want to put the primary decomposition theorem in this context. Let
λj be the eigenvalues of the matrix A, write out the (possibly complex) associated
generalised eigenvectors vj = uj + iwj. Then consider the spaces:

Eu = {uj,wj|Re (λj) > 0}
Ec = {uj,wj|Re (λj) = 0}
Es = {uj,wj|Re (λj) < 0}

Eu is called the unstable subspace of the linear system, Ec is called the centre subspace
of the linear system, and Es is called the stable subspace of the linear system. We also
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will refer to the associated eigenvalues λj as the unstable, centre or stable eigenvalues
(respectively). Because of the primary decomposition theorem we have that

Rn = Eu ⊕ Ec ⊕ Es

and moreover we have that each piece is invariant with respect to A, eA and eAt.
That is, A : Eu,c,s → Eu,c,s respectively, and the same for eA, and eAt.

We also note that if the system in eq. (8.1) is spectrally stable, then we must have
Eu = {0}. We note here the following definition

Definition 8.3. We say that the system in eq. (8.1) (or the critical point at the
origin) is hyperbolic if Ec = {0}.

Evidently there is not a special term for what happens when Es = {0}.

Example 8.1 (Sort of where the term hyperbolic comes from). In this example,
we are going to apply what we know so far to a computationally straightforward
example as well as get our feet wet with regard to some of the ideas of this section.
Consider the 2× 2 first order linear system ẋ = Ax given below

(8.2)

(
ẋ1

ẋ2

)
=

(
−1 2
2 −1

)(
x1

x2

)
.

You can verify for yourself that the eigenvalues of A are λ1 = −3 and λ2 = 1

with corresponding eigenvectors v1 =

(
−1
1

)
and v2 =

(
1
1

)
. We remark that this

constant coefficient homogeneous linear system is hyperbolic, but is not spectrally
stable. Further we have that

Eu = Span{v2}, Ec = {0}, and Es = Span{v1}.

You can also check yourself that

eAt = e−t
(

cosh 2t sinh 2t
sinh 2t cosh 2t

)
,

and so all solutions to eq. (8.2) are of the form eAtx0 where x0 is the vector of
initial conditions. We also know that Es (and Eu) is invariant under the dynamics
of the linear system. This means that there is a (one dimensional) vector space of

solutions of the form ke−3tv1 = ke−3t

(
−1
1

)
=

(
−ke−3t

ke−3t

)
where k ∈ R (this idea

totally generalises by the way, and is the topic of the next section).
Plotting these solutions in the (x1, x2) plane, we can see that if our solution is of

this form, they will start somewhere on the line x2 = −x1 and as t increases move
in towards the origin (see fig. 2). What about the other eigensolution? That is,

what about the solution x(t) = ketv2 = ket
(

1
1

)
=

(
ket

ket

)
where k ∈ R? Here too

it is easy to see that we will start on the line x2 = x1 and we will stay on that line
(invariance of Eu) and as t → ∞ we will travel out away from the origin. What
about the rest of the solutions? Well to get a handle what happens, let’s start with

the initial conditions x0 =

(
1
0

)
. We know from earlier that the solution with this
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initial condition is just the first column of eAt, x(t) = e−t
(

cosh 2t
sinh 2t

)
. Maybe you

remember the equation of a hyperbola x2

a2 − y2

b2
= 1. So here, a = b = e−t, and the

solution curves satisfy the equation of a hyperbola (well...), and in fact, the solution
curves in the (x1, x2) plane all lie on hyperbolae (sort of...)

We know that the solution curve lies on a hyperbola (sort of), but we don’t know
yet which direction the solution will go. Later we will have quite a powerful theorem
that will tell us how to determine this, but for now, the easiest way to do this is

to write out x(t) = e−t
(

cosh 2t
sinh 2t

)
in terms of a linear combination of the solutions

e−3tv1 and etv2. You can check yourself that x(t) = 1
2
etv2− 1

2
e−3tv1. Here it is clear

that as t → ∞ we have that the solution will tend to 1
2
etv2, which is on the line

spanned by v2 in the first quadrant of the (x1, x2) plane. Further it is clear that as
t→ −∞ the solution will tend to 1

2
e−3tv1 which is on the line spanned by v1 in the

fourth quadrant of the (x1, x2) plane. (See fig. 2.) More generally, all solutions will
be of the form c1e

−3tv1 + c2e
tv2 for some constants c1 and c2 which depend on the

initial conditions (can you write the formula for c1 and c2 out explicitly?) and so
we can see that as t → ∞ every solution will tend towards the line spanned by v2

and as t→ −∞ every solution will tend towards the line spanned by v1 (See fig. 2.)
We will pause here to make a couple of remarks. First, in fig. 2, we were able to

sketch all the solutions to this ODE in the (x1, x2) plane, this is called the phase
portrait of the ODE (8.2). For a planer ODE, this gives a view of many solutions in
the phase plane (the (x1, x2) plane) all at once along with the ‘direction’ that time
is flowing.

�3 �2 �1 0 1 2 3

�3

�2

�1

0

1

2

3

Figure 2. The space of solutions to the system given in eq. (8.2).
The eigensolutions are in red, and the specific solution for the initial
condition x0 = (1, 0) is given in purple (colour online). The asymp-
totic behaviour of the solution is clear from the phase portrait.
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Second, this system is hyperbolic, with Eu = Span{v2} and Es = Span{v1}. It
can happen that either Eu or Es = {0} and our system can still be hyperbolic (you
just need to have Ec = {0}). Next, perhaps you can see it in fig. 2 but the solutions
in forward time are pulled towards Eu faster than the solutions are pulled towards
Es in backwards time. This has been reflected by putting double arrows on the
stable subspace Es. This signifies that the solution is travelling along that subspace
faster than it is along the subspace Eu. This also means that strictly speaking the
solutions are not travelling on hyperbolae but rather skewed hyperbolae. This can
also be seen by the fact that the constants in the equation for the hyperbolae are
dependent on time.

In that last example we had that the system was hyperbolic, as well as unstable.
Here is an example of where the lack of hyperbolicity can result in some complicated
behaviour.

Example 8.2. Let’s consider the linear system ẋ = Ax where A is the matrix

A =

0 1 0
0 0 1
0 0 0

. We saw earlier how A2 =

0 0 1
0 0 0
0 0 0

 and how A3 = 0. Now the

eigenvalues of A are all 0 with algebraic multiplicity 3, so in particular the linear
system is spectrally stable. However if we consider the solution to the ODE with the

initial condition x0 =

0
0
1

, we see that eAtx0 =

 t2

2
t
1

 which will grow to infinity

with t (it won’t grow exponentially, but it will still grow).

This motivates the following definition

Definition 8.4. We say a vector of functions x(t) is bounded if there is an M <∞
such that |x(t)|

(
:=
√
x2

1(t) + · · ·+ x2
n(t)

)
< M for all t ≥ 0. Here the xi(t)’s are

the component functions of x(t).

From this we introduce the following

Definition 8.5. A constant coefficient homogeneous linear system (or the critical
point at the origin) is said to be linearly stable if all solutions are bounded as t→∞.

So we can draw immediately the conclusions that if our linear system is hyperbolic
and spectrally stable, then it is linearly stable. There is one more definition that we
want to include:

Definition 8.6. A constant coefficient homogeneous linear system (or the critical
point at the origin) is asymptotically linearly stable if lim

t→∞
x(t) = 0 for all solutions

x(t).

In particular this means that all of the eigenvalues of A must have negative real
part. This also means that A is hyperbolic.

Remark. We note that asymptotic linear stability implies linear stability, and linear
stability implies spectral stability. The reverse does not hold however. But if we
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add hyperbolicity, it does. That is if we know that a system is spectrally stable and
hyperbolic, then it is linearly stable and asymptotically linearly stable. Likewise if
a system is linearly stable and hyperbolic, then it is asymptotically linearly stable.

9. Restricted Dynamics

The idea now is to generalise what happened with Es, and Eu in Example 8.1.
We saw that Es,u were invariant subspaces, and moreover the dynamics of the ODE
ẋ = Ax restricted to Es,u were governed by the (lower dimensional) ODEs v̇1 = λv1

and v̇2 = λ2v2. The key idea is that the invariance of the the subspaces Eu,c,s
with respect to A and eAt means that we can, by mimicking the diagonalization
procedure, get a good description on the dynamics of each piece. This may seem a
bit disconcerting at first glance, but it is incredibly useful.

We will go through the procedure in theory for Eu. The process is essentially the
same for Es and Ec. Suppose that x ∈ Eu were some vector in the unstable subspace
of eq. (8.1). Then let v1, . . .vk be a basis of generalised eigenvectors for Eu. We can
write x uniquely as a linear combination of the vjs:

x = c1v1 + c2v2 + · · ·+ ckvk ci ∈ R.

Now let P be the matrix whose columns are the vjs, P =

 | | |
v1 v2 · · · vk
| | |

 .

Then, writing c = (c1, . . . , ck)
T , we can write x = Pc. Now suppose that we do this

for all the columns of AP (these are all in Eu because of invariance). Now for each
column, we have a new set of cjs and we put these into the columns of a new matrix
U . Putting this all together we get

AP = PU,

where the columns of U are the coefficients corresponding to writing out the columns
of AP in the basis of P .

Remark. As a quick aside, we will count the size of the matrix U . We have that
A is n × n, and P is n × k, so AP is n × k. Now we count the right hand side of
AP = PU , we know that it must be n × k and again we know that P is n × k, so
U must be a k × k matrix.

Okay, so the great (intellectual) leap forward here is that we get a handle on how
the dynamics of eq. (8.1) behave when restricted to the subspace Eu by thinking
about how the elements of U change with time. We have that x = Pc and so
differentiating we get

ẋ = P ċ = Ax = APc = PUc.

So we are left with
P ċ = PUc.

Now P is a n × k matrix whose columns are linearly independent. This means
that P>P will be a k × k invertible matrix (this is because the kernel of P> = the
orthogonal complement of the image of P ). Thus we can multiply both sides by
(P>P )−1P> and get that ċ = Uc. So what we have just shown is the following

Theorem 9.1. The dynamics of eq. (8.1) when restricted to the subspace Eu are
governed by the (now k × k) dynamical system

ċ = Uc.
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Example 9.1. This is maybe not so clear in the abstract. So let’s compute an
example. Let’s consider the linear system ẋ = Ax where A is the matrix A =−1 1 −2

0 −1 4
0 0 1

. We have that the eigenvalues are given as λ1,2 = −1 and λ3 = 1.

Then we can also compute that the generalised eigenspaces are Eu = Span{

0
2
1

} =

Span{v3} and Es = Span{

1
0
0

 ,

0
1
0

} = Span{v1,v2}. On Eu the dynamics are

governed by AP = PU where P =

 |v3

|

 the 3 × 1 matrix which is just the

eigenvector v3. But this means that U must be the 1 × 1 matrix
(
1
)

consisting of
the eigenvalue λ3. What this means is that on the unstable subspace, the dynamics
of ẋ = Ax are governed by the equation ċ = λ3c = c. This might be a bit too
simple, and so misleading, so let’s finish the example and compute the dynamics on

the stable subspace Es. This time the matrix P is given by

1 0
0 1
0 0

 . We need to

solve the matrix linear equation

AP =

−1 1 −2
0 −1 4
0 0 1

1 0
0 1
0 0

 =

1 0
0 1
0 0

(u1 u2

u3 u4

)
= PU.

It should be almost automatic to see that this means that U =

(
−1 1
0 −1

)
. So

on Es we have that the dynamics of ẋ = Ax are given by ċ = Uc which in the
coordinates of the generalised eigenvectors v1,v2 on the stable subspace takes the
form: (

ċ1

ċ2

)
=

(
−1 1
0 −1

)(
c1

c2

)
=

(
−c1 + c2

−c2

)
.

We conclude this section with another example of this procedure, and one that
also illustrates the fact that if a linear system is spectrally stable, and the dynamics
restricted to Ec aren’t deficient (the matrix U isn’t deficient when considered on the
central subspace) then we also have linear stability.

Example 9.2. Consider the linear system ẋ = Ax where the matrix A is given as

A =


−1 −1 −1 −1
0 −4 −1 −1
−1 −1 −1 −1
−1 −1 −1 −1

 .
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The eigenvalues of A (repeated according to their multiplicity) are {−5,−2, 0, 0}
with the associated eigenvectors v1,v2,v3 and v4 (in the same order) as

1
2
1
1

 ,


1
−1
1
1

 ,


−3
−1
0
4

 , and


−3
−1
4
0

 .

Thus we have that Eu = {0}, Ec = Span{v3,v4}, and Es = Span{v1,v2}. To
understand the dynamics on Es, we need to solve AP s = P sU s where U s is a 2× 2
matrix of unknowns, and P s is the matrix whose columns are the stable eigenvectors
(the ones whose associated eigenvalue has Re (λj) < 0),

P s =


1 1
2 −1
1 1
1 1

 .

Solving AP s = P sU s gives (this should be obvious from mimicking the diagonaliza-
tion procedure)

U s =

(
−5 0
0 −2

)
.

So by applying Theorem 9.1 we have that the dynamics of ẋ = Ax restricted to Es
(in this basis of eigenvectors) are given by ċ = U sc. That these are straightforward
dynamics is really the whole reason we chose this basis. Now we will examine the
dynamics on Ec and see that we have linear stability as well. It is straightforward
to see that when we solve AP c = P cU c as before (only this time, P c is the 2 × 4
matrix whose columns are v3 and v4 or any basis for the null space of A), we have
that U c = 0. Thus by applying the theorem, we have that the dynamics are trivial
on Ec. Thus solutions all either decay, or stay constant (at their initial conditions),
and so we have linear stability.

10. Classification of 2-D Linear Systems

Note: There are some accompanying pictures to this section. Small versions
are included at the end. For larger versions, you should consult the course
website.

In Example 8.1, we sketched the phase portrait of a 2 × 2 first order system of
equations from a qualitative perspective. We sketched the eigenvalues, and found
the eigenvectors and eigensolutions, and then discussed what happens to all such
solutions, sketching many of them in the phase plane. A sketched solution in this
fashion is called a phase curve.

The idea now is to perform this analysis for a general 2×2 real constant coefficient
homogeneous system of ODEs. We consider the general case of ẋ = Ax given:

(∗)
(
ẋ1

ẋ2

)
=

(
a b
c d

)(
x1

x2

)
=

(
ax1 + bx2

cx1 + dx2

)
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and we want to understand all the possible behaviours of the solutions to (∗) for

arbitrary real constants a, b, c, d, and an arbitrary initial condition x0 =

(
x0,1

x0,2

)
.

It is worth noticing that if we start with x0 = (0, 0) then we will have the trivial
solution x(t) = 0. Further we have that at the point (0, 0), ẋ = A0 = 0. This makes
the origin a critical point of the system (∗). We will soon see that in ‘most’ cases,
the origin is the only critical point of eq. (∗).

A good place to start is the characteristic equation of A. We write this out in
terms of τ = tr (A) = (a+ d) and δ = det (A) = ad− bc. We have:

(ρ) ρ(λ) = λ2 − τλ+ δ.

The eigenvalues of A are given by

λ± =
τ ±
√
τ 2 − 4δ

2
.

Remarkably, it turns out that knowledge of only τ and δ is sufficient to qualita-
tively classify all the possible behaviours of 2-D linear systems. For the purposes
of convenience we will introduce one more term called the discriminant of eqs. (∗)
and (ρ)

∆ := τ 2 − 4δ.

To organise our thoughts, we will use the (τ, δ) plane and the curve ∆ = 0. This
together with the line δ = 0 and the half-line τ = 0, δ > 0 will divide the (τ, δ) plane
up into five main regions I- V, as well as five border regions (a) - (e). We’ll start
our classification with the ‘biggest’ case, the case where δ < 0.

(I) δ < 0: (This is a generalisation of Example 8.1.) In this case we have that both
λ± are real, and moreover we have that one is positive and one is negative.
That is we have that λ− < 0 < λ+. This means that we have linearly indepen-
dent eigenvectors v− and v+. Now in general we know that all solutions look
like eAtx0. However, in this case it behoves us to consider the eigensolutions
we defined earlier: namely x−(t) = eλ−tv− and x+(t) = eλ+tv+. As in the
example, these solutions are going to be lines in the (x1, x2) phase plane, and
moreover Eu = Span{v+} while Es = Span{v−}. We also have an outward
flow along v+ and an flow into the origin along v−. Rather than writing the
general solution as the exponential of A, it is easier to see what is going on if
we consider instead the general solution to the ODE in terms of the solutions
x−(t) and x+(t). We can write the general solution as

x(t) = k1e
λ−tv− + k2e

λ+tv+,

where k1,2 are found by solving the linear equation
(
v− v+

)(k1

k2

)
=

(
x0,1

x0,2

)
.

Given the form that our general solution has, we see that as t→∞ we have
that x(t) → kv+ where k is some arbitrary constant. (We will make this
more precise later.) This means that no matter what initial condition you
choose, you would end up (as t → ∞) getting asymptotically close to the
line spanned by v+ in the (x1, x2) plane, however you can’t cross the unstable
and stable subspaces (why?), so whatever quadrant relative to Eu and Es you
start in, that’s where you stay. This type of 2-D linear system is called a
saddle. In this case we also say that the origin as a critical point is a saddle.
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We remark here that because we are working with linear autonomous systems,
the classification of the dynamics of the system is the same as describing what
type of critical point the origin is, so we use the same words. We shall see
that in the case of nonlinear planar systems, we will only really be able to
classify the dynamics of (some of the) critical points. That takes care of the
lower half of the (τ, δ) plane, now on to region II.

(II) τ > 0,∆ > 0 : This corresponds to the region in the right upper half plane

below the curve δ = τ2

4
. In this instance there are two real positive eigenvalues

0 < λ− < λ+. Again we have two linearly independent eigenvectors v+ and
v− from which we can form the eigensolutions eλ+tv+ and eλ−tv− that span
the unstable subspace (now all of R2). We call this system/the origin as a
critical point an unstable node or a nodal source. Just like with a saddle, it’s

simplest to write down this solution with initial conditions

(
x1

x2

)
is

x(t) = eAt
(
x1

x2

)
.

Also just as in the saddle case, we can write out solutions in the basis of simple
solutions, so we have

x(t) = k1e
λ+tv+ + k2e

λ−tv−

with the ki coming from the initial conditions as before. Now we can see that
even though both of the exponents are positive, we will have that the larger
one will dominate as t→∞ that is all solutions will tend to

x(t)→ eλ+tv+ + c

where the c is an offset coming from the initial conditions. (Why doesn’t this
term appear in the saddle case?)

(III) τ > 0,∆ < 0 : Here, we have two complex conjugate eigenvalues λ± =
1
2
(τ ± i

√
−∆), but both with positive real part. We also have two complex

conjugate eigenvectors v±. Since they are complex, we don’t have simple real
solutions this time. This case is called an unstable focus or a spiral source. To
better understand what’s going on, we let P = [u,w] be the matrix consisting
of the real and imaginary parts of the complex conjugate eigenvectors v±. We
can then put all that we’ve done so far together to get that our solution will
be of the form

x(t) = e
τ
2
tP

(
cos t

2

√
−∆ sin t

2

√
−∆

− sin t
2

√
−∆ cos t

2

√
−∆

)(
y1

y2

)
Where the yis satisfy

(
y1

y2

)
= P−1x0. As t → ∞ we have that this is going

to grow exponentially, while simultaneously spiraling around the origin of the
(x1, x2) plane. The question is which direction does it spin? Counterclockwise

or clockwise? One way to do this is to just pick the initial condition

(
1
0

)
and

plug it into your original ODE. That is, compute ẋ = A

(
1
0

)
. This arrow will

have some vertical component (it has to - why?) if that vertical component
is positive, then the arrow is pointing up and we have a counter clockwise
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motion. If the vertical component is negative, then the arrow is pointing
downwards, and we have a clockwise motion. One nice thing to note here

is that A

(
1
0

)
=

(
a
c

)
so we can conclude that if c > 0, we have counter

clockwise motion, while if c < 0, we’ll have clockwise motion. (Think about
why c 6= 0.)

Question. There is another way to figure out, which direction the focus is
turning, from the general solution. Can you determine it?

(IV) τ < 0,∆ < 0 This case is identical to the previous one except that now our
solutions all spiral in to the origin. We have two complex conjugate eigenvalues
λ± = 1

2
(τ ± i

√
−∆), and two linearly independent eigenvectors v± which are

complex conjugates of each other. Again, letting P = [u,w] we write our
solutions as

x(t) = e
τ
2
tP

(
cos t

2

√
−∆ sin t

2

√
−∆

− sin t
2

√
−∆ cos t

2

√
−∆

)(
y1

y2

)
.

And we see that our solutions will spiral into the origin around ellipses (either
clockwise or counter clockwise again determined by the same reasoning). This
is called a stable focus or spiral sink.

(V) τ < 0,∆ > 0 Here, we have a case similar to (3), except that we have two real
negative eigenvalues λ− < λ+ < 0. This won’t change the form of our general
solution, either

eAt
(
x1

x2

)
or

x(t) = k1v+e
λ+t + k2v−e

λ−t,

with the xi’s being the initial conditions, and the ki’s coming from them as
before. Now however, as all the eigenvalues are negative, our solutions will
all tend to 0 as t → ∞. However, they will do so along the ‘most negative’
eigenvector. This is called a stable node or a nodal sink

That takes care of the five main regions. We next consider the borders between the
regions. For the most part a good way to see what happens where is to consider
how to turn one of the larger regions into its neighbour - for instance, consider how
one might pass from region I to region II. In this case you would have the negative
eigenvalue in region I would become the smaller of the positive eigenvalues in region
II. But this means that on the border of the two, you would have a zero eigenvalue.
So we need to investigate qualitatively (i.e. think about) what that means. This
type of reasoning can/will be extended to each of the five border cases.

(a) In this case we have τ > 0 and δ = 0. Here, as we stated above, the eigenvalues
satisfy 0 = λ− < λ+, so we have one positive eigenvalue and one zero eigenvalue.
We do still have two linearly independent eigenvectors and so we have two ‘spe-
cial’ solutions like before. This time though one of them (v−) is constant. This
means that there is no motion in the v− direction. We write the general solution
out as

x(t) = k1e
λ+tv+ + k2v−.

We can see that even though there is no motion on v− if we start anywhere off
it we will travel on the line parallel to v+ passing through the initial condition.
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This is called a degenerate or non isolated unstable equilibrium. It is worth
noting here that we actually have a whole subspace of critical points spanned by
v− (including the origin). Each one of them is called a degenerate equilibrium,
and the system is called this as well in this instance.

(b) τ > 0,∆ = 0 : Here we have a repeated, positive eigenvalue λ =
τ

2
of algebraic

multiplicity 2. We know that the geometric multiplicity must be either one or
two. For the time being, we will assume that the geometric multiplicity is 1 as
the case of geometric multiplicity equal to 2 is not really a 2-D linear system (see
special case (**)). So we only have one eigenvector v, and our general solution
takes the form (after some calculations):

x(t) = eAt
(
x1

x2

)
= eλt(I + (A− λI)t)

(
x1

x2

)
.

We also have a single eigensolution x(t) = eλtv and a single line in the (x1, x2)
plane which remains invariant. This type of system is called an unstable improper
node.

(c) τ = 0, δ > 0. In this case we have two complex conjugate, purely imaginary

eigenvalues λ± = ±i
√
δ, and two complex conjugate eigenvectors v± = u± iw.

Again we form the matrix P = [u,w] and we have that solutions will be of the
form

x(t) = P

(
cos t
√
δ sin t

√
δ

− sin t
√
δ cos t

√
δ

)(
y1

y1

)
.

These solutions will travel along ellipses themselves. That is the orbits will close
up. Determination of clockwise orbit or counterclockwise orbit will be the same
as in the focus cases. This is called a center.

(d) τ < 0,∆ = 0: This is the same as (b), only now all of the solutions will tend to
0. That is we make the same analysis as in the (b) case, only for our qualitative
picture, we reverse the arrows. We have a single eigenvalue λ and a single
eigenvector v netting a single eigensolution eλtv and our general solution will
have the same form eAtx0 = eλt(I+(A−λI)t)x0. This is called a stable improper
node.

(e) τ < 0, δ = 0: Here we have a similar situation as to case (a), only this time we
don’t have any motion along the vector v+. Further we have that our solutions
will have the form

x(t) = k1e
λ−tv− + k2v+

and this means that all the solutions will tend into the line v+. This type of
system (and the critical points along v+) is called a degenerate stable equilibrium.

Special cases While the above takes care of almost every single case, and cer-
tainly the ‘majority’ of them, there are two exceptional cases that need to be ad-
dressed. The first deals with the last, unclaimed point in the (τ, δ) plane, while the
second deals with the case of a repeated eigenvalue with geometric multiplicity 2.

(*) τ = δ = 0 In this case we have a single repeated eigenvalue of 0, and only a
single eigenvector. This means that A is nilpotent, of nilpotency 2. We have

that (from the tutorials) A must have the form A =

(
a b
−a2

b
−a

)
. We must

have that b 6= 0 because otherwise then A = 0 the zero matrix and we’d
have two linearly independent eigenvectors. The form of A tells us that we
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have one eigenvector v =

(
−b
a

)
and the other generalised eigenvector can

be chosen to be

(
0
1

)
. In this basis A has the form A =

(
0 b
0 0

)
so we have

a very simple dynamics: along v we have no flow, but for every line parallel
to v we have flow parallel to v. I needed a name for this exceptional case,
as all the other ones had names, so I called it nilpotent flow. Full disclosure
though, this is non-standard, but it should be reasonably clear where the
name comes from.

(**) Now we deal with the case of when we have a repeated eigenvalue but two,
linearly independent eigenvectors. In this instance A = diag (λ, λ), A is a
diagonal matrix, and the system decouples. This means it splits into two one
dimensional linear ODE’s and flow in this case is simply radially out or in
along the ray from the origin to the initial condition depending on the sign
of λ.
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11. Systems with Non-constant Coefficients

Now we consider the case where we have a linear first order system of equations
still but the matrix A is an n×n matrix of functions. That is, rather than consider

(11.1) ẋ = Ax x(0) = x0

where A is a matrix of constants, we consider the IVP

(11.2) ẋ = A(t)x x(t0) = x0.

Besides changing our equation so that it is no longer a constant coefficient equation,
we have also changed our initial condition. Rather than starting at t = 0 we want
to consider systems which start at an arbitrary point t0. One reason for this is that
A(t) may not be defined on all of R. This happens for scalar valued ODEs as well,
just consider the ODE

ẋ =
1

t
x

where x(t) is a function from R → R. The right hand side of the above equation
isn’t defined for t = 0, so any solution needs to avoid that point in the domain as
well. In our study of constant coefficient ODEs we found the principal fundamental
matrix solution (PFSM) at t0 = 0 to be eAt. So if we wanted to slightly generalise
this, we have that the PFSM at t0 of the ODE in eq. (11.1) is

exp(A(t− t0)) = exp

(∫ t

t0

Ads

)
.

The columns of this matrix are a linearly independent set of n vectors of functions
and the matrix satisfies the matrix initial value problem

(11.3) Φ̇ = AΦ Φ(t0) = I.

This last sentence is in effect the definition of a PFSM.

Definition 11.1. A fundamental solution matrix to ẋ = A(t)x, where A(t) is an
n × n matrix is a matrix solution to Φ̇(t) = A(t)Φ(t) with n linearly independent
columns. If Ψ(t) is a fundamental solution matrix and Ψ(t0) = I for t0 ∈ R, we say
that Ψ(t) is a principal fundamental solution matrix at t0.

We would like to find the fundamental solution matrix for eq. (11.2). It turns out
that this is not so easy. In particular, it is not the case that the PFSM of eq. (11.2)

is exp
(∫ t

t0
A(s)ds

)
, in fact, this matrix won’t even solve the ODE in general. The

reason for this is because the matrices A(t) and B(t) :=
∫ t
t0
A(s)ds do not in general

commute.

Example 11.1. Consider the ODE

(11.4) ẋ =

(
1 −1

t
1 + t −1

)
x t > 0.
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First notice that A(t) :=

(
1 −1

t
1 + t −1

)
is not defined for t = 0, so any solution can

not include 0 as part of its domain. You can verify yourself that

Φ(t) :=

(
1 − log(t)
t 1− t log(t)

)
is a FSM. In order to write down a PFSM, we need to choose a t0. Let’s choose

t0 = 1. You can see that Φ(1) :=

(
1 0
1 1

)
, and so we have that

Ψ(t) := Φ(t)Φ−1(1)

is a principal fundamental solution matrix. This means that any solution to the
initial value problem ẋ = A(t)x with x(1) = x0 is given by Ψ(t)x0. The question is
does

Ψ(t) = exp

(∫ t

1

A(s)ds

)
?

The answer is no. This can be verified by computing the matrix exponential and

then evaluating at t = 2. We have that exp
(∫ 2

1
A(s)ds

)
=

(
1.53 ∗
∗ ∗

)
while Ψ(2) =(

1.69 ∗
∗ ∗

)
so these matrices can not be equal. Moreover, exp

(∫ 2

1
A(s)ds

)
doesn’t

even solve the ODE! The best way I know to show this is by using Mathematica. For

convenience, denoteB(t) :=
∫ t

1
A(s)ds. We have that d

dt
exp(B(t))

∣∣
t=2

=

(
0.09 ∗
∗ ∗

)
,

while A(2) exp(B(2)) =

(
0.008 ∗
∗ ∗

)
.

There is not a general way to solve ẋ = A(t)x when A(t) is not a constant matrix,
but all is not lost. We have the following extremely useful theorem

Theorem 11.1 (Liouville’s /Abel’s formula). Let Φ(t) be a fundamental matrix
solution to eq. (11.2). Then

det Φ(t) = det Φ(t0)e
∫
t0

tr(A(s))ds
.

The proof for the general case is a bit technical, so we are omitting it. A tutorial
question asks you to tackle the case when A(t) is a 2×2 matrix. The main idea of the
proof is to show that det(Φ(t)) satisfies the following (scalar) differential equation

det(Φ(t))′ = tr (A(t)) det(Φ(t))

and the result follows.

48 c©University of Sydney


	1. A Mild Introduction
	2. The First Examples
	3. Matrix ODEs
	4. Diagonalization and the Exponential of a Matrix
	5. Complex Eigenvalues
	6. Multiple/Repeated Eigenvalues
	7. Wasn't this class about ODE's?
	8. Stability - the Beginnings
	9. Restricted Dynamics
	10. Classification of 2-D Linear Systems
	11. Systems with Non-constant Coefficients

