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R Marangell Part II - Existence and Uniqueness of ODES

1. Metric Spaces - The Beginnings

So.... I am from California, and so I fly through L.A. a lot on my way to my parents
house. How far is that from Sydney? Well... Google tells me it’s 12000 km (give or
take), and in fact this agrees with my airline - they very nicely give me 12000 km on my
frequent flyer points. But.... well.... are they really 12000 km apart? What if I drilled
a hole through the surface of the Earth? Using a little trigonometry, and the fact that
the radius of the earth is R = 6371 km, we have that the distance ‘as the mole digs’
so-to-speak from Sydney to Los Angeles CA is given by (see Figure 1):

x = 2R sin
12000

2R
≈ 10303 km (give or take)

Figure 1. A schematic of the earth showing an ‘equatorial’ (or great) circle
from Sydney to L.A.

So I have two different answers, to the same question, and both are correct. Indeed,
Sydney is both 12000 km and around 10303 km away from L.A. What’s going on here
is pretty obvious, but we’re going to make it precise. We are using a different definition
of distance in each case. To make this mathematically precise we are going to define the
following:

Definition 1.1. Let X be a (non-empty) set. A metric or a distance function is a map
d : X ×X → R such that the following three properties hold.

(1) d(x, y) ≥ 0 ∀x, y ∈ X and d(x, y) = 0⇔ x = y (nonnegativity)

(2) d(x, y) = d(y, x) ∀x, y ∈ X (symmetry)

(3) d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X (the triangle inequality).

If X is a space, and d is a metric on X, the we call the two together (X, d) a metric space.

Metric spaces are pretty useful, in that they abstract the concept of distance, so really,
any space you can put a concept of distance on, has a bunch of properties, (some that you
might not even have thought about) and these properties, can be characterised in terms
of the space, and the distance function on it. We are going to focus on the first three
examples outlined in these notes, but I am including more (both here and in the tutorial
questions), so that you can get a feel for how broad this topic actually is.
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Example 1.1. Let X be the real vector space X = Rn, and let d be the usual Euclidean
distance

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2

where the xis and the yis are the components of the vectors x and y ∈ Rn. This is the
metric that we used to compute the distance from Sydney to L.A. ‘as the mole digs’,
only our space wasn’t all of R3, but rather the surface of the Earth, viewed as a body in
3-space.

Example 1.2. Let X = C0[a, b] be the space of continuous real valued functions on the
closed interval [a, b], and let d∞ be the metric defined by

d∞(f, g) = sup
x∈[a,b]

|f(x)− g(x)| .

That is, the distance between any two functions is the maximum distance the functions
are simultaneously apart. By way of example (in this example) let [a, b] be the interval
[0, 2π] and let f(x) = sin(x) and g(x) = cos(x). Then

d∞(f, g) = sup
x∈[0,2π]

|sin(x)− cos(x)| .

The way to determine this is to find the critical points of the new function h(x) =
sin(x) − cos(x) for x ∈ [0, 2π]. We take the derivative of h(x) and see that h′(x) =
0 ⇒ sin(x) = − cos(x). Which means that x = 3π

4
, 7π

4
. So for x ∈ [0, 2π] we have that

d∞(f, g) =
∣∣sin(3π

4
)− cos(3π

4
)
∣∣ =
√

2 (see figure 2).

1 2 3 4 5 6

�1.0

�0.5

0.5

1.0

Figure 2. The distance in the supremum metric d∞ between sin(x) (pur-
ple) and cos(x) (blue) are the longer lines (of length

√
2). The shorter line

shows that 1 is not the supremum of |sin(x)− cos(x)| for x ∈ [0, 2π].

Example 1.3. Here we use the same space X = C0[a, b] of continuous functions on a
closed interval. But this time we define a new metric d2 as follows. For two functions
f(x) and g(x) we let the distance between them be defined as:

d2(f, g) =

√∫ b

a

(f − g)2dx.

This is called the L2 metric. Here again, we’ll compute an example. Suppose again that
[a, b] = [0, 2π] and that f(x) = sin(x) and g(x) = cos(x). Then you can verify yourself
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that

d2(f, g) =

[∫ 2π

0

(sin(x)− cos(x))2dx

] 1
2

=
√

2π.

Here the thing to notice is that d2(f, g) 6= d∞(f, g).

So these are the three important specific examples of metric spaces that we’re going to
be considering a lot in this class. However, they all come from a couple of more general
ideas, and it is a good idea to familiarise yourself with how to get a whole bunch more
examples of metric spaces.

Example 1.4 (Normed Spaces). Suppose that X is a vector space over either R or C
(denoted by F for convenience). Then ‘recall’ that a norm on X is a function (usually
denoted) || · || : X → R such that the following three properties hold

(1) ||x|| ≥ 0 ∀x ∈ X and ||x|| = 0⇔ x = 0

(2) ||λx|| = |λ|||x|| ∀λ ∈ F (= R or C) and ∀x ∈ X

(3) ||x+ y|| ≤ ||x||+ ||y|| ∀x, y ∈ X.

If X is a vector space, and || · || is a norm on it, we call (X, || · ||) a normed space. Some
examples of normed spaces are Rn with the Euclidean norm.

The point is that if (X, || · ||) is a normed space, then you can turn it into a metric
space by defining

d(x, y) = ||x− y||.

This is where the metrics for d2 and d∞ on C0[a, b] came from in fact (as well as the
Euclidean metric on Rn). The metric d2 comes from the L2 norm which is defined on
continuous functions f ∈ C0[a, b] as

||f ||L2 :=

√∫ b

a

f 2dx,

while d∞ comes from the ‘sup’ norm which is defined on continuous functions f ∈ C0[a, b]
as

||f ||∞ := sup
x∈[a,b]

|f(x)| .

Just to check that you are following along, you should verify yourself that if [a, b] = [0, 2π]
then

|| sin(x)||∞ = || cos(x)||∞ = 1 and || sin(x)||L2 = || cos(x)||L2 =
√
π.

Example 1.5 (Inner Product Spaces). Another host of examples comes from an inner
product on a vector space. Suppose that X is a real or complex vector space. Then an
inner product on X is a mapping 〈 , 〉 : X ×X → R or C such that the following hold:

(1) 〈x, y〉 = 〈y, x〉 ∀x, y ∈ X

(2) 〈ax+ y, z〉 = a 〈x, z〉+ 〈y, z〉 ∀a ∈ R or C and ∀x, y, z ∈ X

(3) 〈x, x〉 ≥ 0 ∀x ∈ X and 〈x, x〉 = 0⇔ x = 0.
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(Think of the dot product on Rn). Now if we have an inner product, we can define a norm
and hence a metric on X in the following way. For each x ∈ X define the norm induced
by the inner product as

||x||〈,〉 :=
√
〈x, x〉.

To put this all in context, it is fairly clear that the Euclidean norm (and hence the
Euclidean metric) comes from an inner product, the one you know and love, the standard
dot product on Rn. What might not be so obvious is that the L2 norm (and hence the d2
metric) on C0[a, b] comes from an inner product. Let f and g be two continuous functions
on [a, b]. Then define the L2 inner product as follows:

〈f, g〉L2 :=

∫ b

a

fgdx.

It might be interesting to think about what it means for two functions to be orthogonal
in this sense. This also allows one to define the angle between two functions, and really
a host of other things that you can do with the standard dot product on Rn. Lastly it is
perhaps interesting to note that though the L2 norm comes from an inner product, the
sup norm || · ||∞ does not. This isn’t too hard to show, and so you should go ahead and
see what makes it different. (Hint: Google the parallelogram identity.)

2. The Topology of Metric Spaces

One of the points of introducing metric spaces was that metrics are intrinsic objects
that change the shape of your space. In order to better understand this sentence, we begin
to explore the concept of open and closed sets in a metric space. We start with the most
basic sets. For what follows, we’ll let (X, d) be a metric space.

Definition 2.1. For x ∈ X and ε > 0 we define the open ball of radius ε about x, the
ε-ball about x, or the ε-neighbourhood about x as all the points in the space which are
within ε (as measured by our metric) of the element x. That is:

Bd(x; ε) = B(x; ε) := {y ∈ X|d(x, y) < ε}
Here we will sometimes use the Bd notation to indicate the metric, but if the metric is
clear, we will drop the d subscript. Lastly, if ε = 1, then B(x, 1) is called the unit ball
about x.

In general the shape of an open ball of radius ε depends on the metric.

Example 2.1. Let (X, d) = (R, | · |) be the usual Euclidean metric (i.e. the absolute
value i.e. the metric induced from the Euclidean norm). Then the open ball around a
point a ∈ R of radius ε is simply the open interval (a− ε, a+ ε).

Example 2.2. Let (X, d) = (Rn, || · ||) be the usual Euclidean metric (i.e. the metric
induced from the Euclidean norm). Then the open ball around a point a ∈ Rn of radius
ε is simply the open n ball

B(a; ε) =
{
x ∈ Rn|

√
(a1 − x1)2 + · · ·+ (an − xn)2 < ε

}
where the ais are the components of a and the xis are the components of the points in Rn

in the ε−ball around a. For R2 this is the usual open disc of radius ε that you are used
to (see Figure 3).

Example 2.3. An example that you may not find so familiar is if we let (X, d) =
(C0[a, b], d∞) be the space of continuous functions on a closed interval, equipped with
the sup metric (coming from the sup norm). What does a ball of radius ε about a fixed
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Figure 3. A disc of radius ε about a point a ∈ R2.

function f ∈ (C0[a, b], d∞) look like? Well, by chasing down the definitions, we have that
a function g will be in Bd∞(f ; ε) provided that

sup
x∈[a,b]

|f(x)− g(x)| < ε.

This means that the function can get kind of ‘wild’ (whatever that means - and provided
it stays continuous) but that it can’t ‘stray’ too far from the function f(x). See Figure 4
for a qualitative illustration. Just as a remark - the ε-ball around a function with the d2
metric is a bit weirder...

Figure 4. The ‘ball’ of radius ε about the function f(x) in the sup norm.
Note how the very oscillatory function in red dots is still in the ‘ball’. A
continuous function can do whatever it wants around the function f(x) so
long as it stays within the tube of radius ε.

Okay, so now for a more general idea than just an ‘open’ ε−ball around a point.

Definition 2.2. A subset U ⊂ (X, d) of a metric space is called open if around every
point x ∈ U you can find an ε−ball that is entirely contained in U . That is

∀x ∈ U, ∃ ε s.t. B(x; ε) ⊂ U.
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We also have the following, related ideas/definitions

Definition 2.3. A subset A ⊂ (X, d) of a metric space is called closed if its complement
in X is open, that is X \ A is open.

Definition 2.4. The interior of a set U in a metric space X, denoted Int (U) is the largest
open set contained in U , in the following sense: if B is any open set and B ⊂ U , then,
B ⊂ Int (U).

Definition 2.5. The closure of a set A in a metric space X, denoted A is the smallest
closed set containing A, in the following sense: if V is a closed set, and A ⊂ V then
A ⊂ V .

Definition 2.6. The boundary of a set U in a metric space X, denoted ∂U is defined as
the closure of U minus the interior ∂U := U \ Int (U). The following, equivalent definition

is also sometimes useful ∂U = U ∩ (X \ U).

Example 2.4. As a sort of sanity check with all these definitions, let’s look at what these
are in R with the usual Euclidean metric. First, we have that open intervals are open -
this is useful, since you’ve probably been using the term ‘open interval’ for quite a while,
so it would be a pain if somehow they were different things. Also it is sort of important to
note that the whole space R itself is open, as is its ‘complement’ ∅ the empty set (there’s
nothing in it to put an ε−ball around so the definition is trivially satisfied). Further, we
have that the union of any number of open intervals is also open. And we have that any
finite number of these open intervals can be intersected. Putting this together we have
the following

Fact. The open sets in (R, | · |) are

• Open intervals (a, b),
• The whole set R and its complement ∅, the empty set,
• Arbitrary unions of open intervals (as well as arbitrary unions of open sets),
• Finite intersections of open intervals (as well as finite intersections of open sets).

What this is doing is making formal what you’ve already known since you knew the
meaning of an open interval in R. We can do the same thing for closed sets

Fact. The closed sets in (R, | · |) are

• Closed intervals [a, b],
• The whole set R and its complement ∅, the empty set (the complements of both

are open),
• Arbitrary intersections of closed intervals (as well as arbitrary intersections of

closed sets),
• Finite unions of closed intervals (as well as finite unions of closed sets).

Again, the aim here is to simply make precise what you already know, and to put it
in the language of metric spaces. It is easy to see that the ‘half-open’ interval [a, b) is
neither open nor closed, according to our definitions. It is also straightforward to see that
the interior of an open interval (a, b) is itself, while the closure of an open interval is the

closed interval (a, b) = [a, b].... This sort of chasing the definitions carries on and on.

Example 2.5. This example is just the previous one, but replace R with Rn and the
metric induced from the Euclidean norm in higher dimensions is denoted ‖ · ‖. It is
straightforward to see that the open n−ball, of radius r about a point a - the one which
you have been working with for quite a while is open i.e.

B(a, r) =
{
y ∈ Rn|

√
(y1 − a1)2 + · · ·+ (yn − an)2 < r

}
7 c©University of Sydney
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is open (where aj are the components of a and yj are the components of y). Likewise, we
have that

Fact. The open sets in (Rn, ‖ · ‖) are

• Open balls of radius r about any point a ∈ Rn, B(a; r),
• The whole set Rn and its complement ∅, the empty set,
• Arbitrary unions of open balls (as well as arbitrary unions of open sets),
• Finite intersections of open balls (as well as finite intersections of open sets).

And similarly we have that closed sets are the closed disks you’ve been working with.

D(a, r) = B(a; r) =
{
y ∈ Rn|

√
(y1 − a1)2 + · · ·+ (yn − an)2 ≤ r

}
.

Fact. The closed sets in (Rn, ‖ · ‖) are

• Closed disks of radius r about any point a ∈ Rn, D(a; r),
• The whole set Rn and its complement ∅, the empty set,
• Arbitrary intersections of closed disks (as well as arbitrary intersections of closed

sets),
• Finite unions of closed disks (as well as finite unions of closed sets).

It is straightforward to see that the boundary of an open ball of radius r about a point
a ∈ Rn is the n−sphere of radius r centred at a:

∂B(a; r) = Sn(a; r) =
{
y ∈ Rn|

√
(y1 − a1)2 + · · ·+ (yn − an)2 = r

}
.

You are of course, encouraged to prove these facts rigorously, though it is pretty much
the same in both cases and in both cases is just an application of the definitions of open
and closed sets.

Before we move on to more complicated things, I would like to point out that this
definition of closed that we’ve been using is a bit ‘clunky’, and not so intuitive. I would
be nice if we had a better, (but equivalent) definition of a set A in a metric space being
closed. To that end, we define the following:

Definition 2.7. A point x in a metric space, (X, d) is called a limit point or an accumu-
lation point of a subset A ⊂ (X, d) if every ε−neighbourhood B(x; ε) about x has at least
one point, not equal to x in A. That is x ∈ (X, d) is a limit point of A if and only if the
following holds:

∀ε > 0 B(x; ε) \ {x} ∩ A 6= ∅.

One thing to note is that the point x need not necessarily be in A as the next (straight-
forward) example shows.

Example 2.6. Let (X, d) = R, | · |. It is pretty straightforward to see that the limit points
of the open interval (a, b), are the points in the closed interval [a, b].

Example 2.7. A slightly more complicated example is the following. Let N+ denote the
positive integers (i.e. {1, 2, 3, . . .}. Define the set A ⊂ R as

A =

{
1

n

∣∣∣∣n ∈ N+

}
=

{
1,

1

2
,
1

3
, . . .

}
.

The claim is that {0} is the only limit point of A. First, we show that 0 is a limit point.
This is easy enough, for any ε > 0 we have that there is an N ∈ N+ such that 1

N
< ε.

Thus we have that for all n > N, 1
n
∈ B(0; ε) \ {0}, so 0 is a limit point. Next we have to

show that 0 is the only one. For any x ∈ R \ {0} we have that one of the four cases

(1) x < 0. In this case 0− x = δ > 0, and so we have that B(x; δ
2
) \ {x} ∩ A = ∅.
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(2) x > 1. Here we have that x−1 = δ > 0 and so we have that B(x; δ
2
)\{x}∩A = ∅.

(3) x = 1
n

for some n ∈ N+. Then B( 1
n
; 1
2(n2+n)

) \
{

1
n

}
∩ A = ∅.

(4) 1
n+1

< x < 1
n

Then choose δ = min
(
x− 1

n+1
, 1
n
− x
)
, and B(x; δ

2
) \ {x} ∩ A = ∅.

See Figure 5.

Figure 5. A Proof by Picture

The reason for introducing Definition 2.7 was that we wanted a ‘better’ definition of a
closed set. Well, here it is

Theorem 2.1 (Alternate definition of a closed set). A set A ⊂ (X, d) of a metric space
is closed if and only if it contains all its limit points.

3. Sequences and Completeness

Related to the idea of limit points are is the notion of a (convergent) sequence. A
sequence in a metric space is just a list of points (xn), indexed by N or N+ (depending on
whether or not you start counting from 0 or from 1.

Definition 3.1. A sequence (xn) in a metric space is said to converge to a point x ∈ X
if it gets and stays as close to x as we please (using the distance function provided in the
metric space of course), provided we choose the index high enough. That is:

∀ε > 0 ∃N = N(ε) s.t. n > N(ε)⇒ d(x, xn) < ε.

If a sequence (xn) converges to x then we call x the limit and write

lim
n→∞

xn = x or xn → x.

If (X, d) = (Rn, ‖ · ‖) then you already know, and are (should be) reasonably familiar
with this. An alternate way to characterise the definition of a limit of a sequence is the
following.

Definition 3.2 (Alternate definition of a limit). A sequence (xn) converges to x in a
metric space (X, d) if and only if for every ε > 0 the ball of radius epsilon about x
contains all but a finite number of terms of (xn).

Continuing on in this vein, we say that

Definition 3.3. A sequence (xn) in a metric space (X, d) is Cauchy if the elements of
the sequence eventually all get close together. That is:

∀ε > 0,∃N = N(ε) s.t. n,m > N ⇒ d(xn, xm) < ε.

We have the following proposition.

Proposition 3.1. A convergent sequence is Cauchy.

Proof. Let (xn) → x be a convergent sequence in (X, d). Then we have that for an
arbitrary ε > 0 there is an N = N(ε) such that d(xn, x) < ε

2
for all n > N. Thus we have

that
d(xn, xm) ≤ d(xn, x) + d(xm, x) (by the ∆ inequality) ≤ ε

2
+
ε

2
= ε.

�
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The next natural question is to ask whether a Cauchy sequence is convergent. Evidently
not, since we have the following definition

Definition 3.4. A metric space in which all Cauchy sequences converge is called complete.

Another reason for introducing this definition is the following

Axiom of Mathematics. The real numbers R are complete.

This is a basic assumption that you pretty much can’t get away from. If you start with
a sequence of real numbers, and you know that it is Cauchy, then it will converge to a
real number. In some senses this is one of the main reasons that the real numbers were
invented. Consider the following:

Example 3.1 (Easy Example). The rational numbers (Q, | · |) with the usual Euclidean
metric are not complete. To see this take any decimal expansion of your favourite irrational
number. Consider the expansion of π ≈ 3.1415926535897932384626........ Then write

xn =
n∑
j=0

aj
10j

where aj is the jth decimal digit of π,

so that x0 = 3, x1 = 3.1, x2 = 3.14, . . . etc. These are all rational numbers (by construc-
tion), and we have that for any ε > 0 we can choose N so that |π−xN | < ε

2
. We then have

that ∀m,n > N, d(xn, xm) = |xn − xm| < |xn − π|+ |xm − π| = ε. And so the sequence is
Cauchy. However, we explicitly chose it so that it would ‘converge’ (not in Q mind you,
but in R), to the number π which we know is not in Q (how do we know this?), and so
our space Q is not complete.

Example 3.2. Let (X, d) = (C0[0, 1], d2). Let (fn) = xn be the sequence of monic
polynomials of a single degree. We claim that this sequence is Cauchy in (X, d2). To see
this, first suppose without loss of generality that m > n. We have

d2(x
m, xn) =

[∫ 1

0

(xm − xn)2dx

] 1
2

=

[
1

2m+ 1
− 2

1 +m+ n
+

1

2n+ 1

] 1
2

≤
[

1

1 + 2m
+

2

1 +m+ n
+

1

1 + 2n

] 1
2

≤
[

4

1 + 2n

] 1
2

≤ 2√
1 + 2n

Now for any ε > 0 choose N = N(ε) so that 2√
1+2N

< ε. Then if m,n > N we have that

d2(x
n, xm) < ε and so the sequence is Cauchy in this metric.

Why am I going on about this? Well for starters, complete metric spaces are very nice,
and secondly, this notion of being Cauchy and/or converging is quite subtle. For example
consider the following.

Example 3.3. Let (X, d) = (C0[0, 1], d∞). Let (fn) = xn. So we have the same space X
and the same sequence in it. The only difference this time is that the metric has changed.
We claim that for any fixed n, as m→∞ we have that d∞(xn, xm)→ 1, the distance in
the sup norm tends towards 1 (see Figure 6). You can prove this by taking derivatives
of the function h(x) = xn − xm. Again first, we assume without loss of generality that
m > n. Then we have

h′(x) = nxn−1 −mxm−1 = xn−1(n−mxm−n) = 0⇒ x = 0 or x =
( n
m

) 1
m−n

.
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Plugging this back into h and taking the limit for a fixed n as m→∞ we have

lim
m→∞

[( n
m

) n
m−n −

( n
m

) m
m−n
]

= lim
m→∞

[( n
m

) n
m−n − 0

]
L’H
= 1

where we’ve used L’Hôpital’s rule to compute the last limit.

Figure 6. It’s pretty easy to see from the picture that for any fixed n the
supremum of the distance between xn and xm on [0, 1] tends towards 1 as
m→∞.

Okay, so to recap, we have that the sequence (fn) = xn is Cauchy in (C0[0, 1], d2), but
is not in (C0[0, 1], d∞). Now let’s define the function f : [0, 1]→ R as follows:

f(x) =

{
1 if x = 1

0 else.

It is easy to see that for any fixed x0 ∈ [0, 1] we have that the sequence of real numbers
(fn(x0))→ f(x0). It is also apparent that f(x) is not in C0[0, 1] (no matter what metric).
However, this convergence issue is quite subtle. For example, you can verify for yourself
that (fn) → 0 in (C0[0, 1], d2). So while we have that our sequence converges pointwise
to one function, it converges in the d2 metric to another. It actually will converge to
an infinite number of functions which are not the same, however, only one of them is
in C0[0, 1]. So we have that this sequence (fn) = xn is Cauchy in (C0[0, 1], d2) and it
converges to 0, which is in the same space. It also converges in the d2 metric to a bunch
of other functions which aren’t in the space. Ao is (C0[0, 1], d2) a complete metric space?
The answer is no, as the following example shows:

Example 3.4. Let fn for n ∈ N+ be the sequence of functions defined as follows

(3.1) fn(x) =


0 0 ≤ x ≤ 1

2

nx− n

2

1

2
< x <

1

2
+

1

n

1
1

2
+

1

n
≤ x ≤ 1.
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Figure 7.

For plots of the graphs of fn(x) on [0, 1] see Figure 7. It is reasonably straightforward to
see that (fn) is a Cauchy sequence in this metric. Assuming without loss of generality
that m > n > 2 and proceeding by direct calculation we have that∫ 1

0

(fn − fm)2dx =
(m− n)2

3m2n
<

(m+ n)2

3m2n
<

4m2

3m2n
<

4

3n
.

So we have that if 1
N
< 3

4
ε then for all n,m > N we have that d2(fn, fm)2 (and hence

d2(fn, fm)) can be made as small as we like. It should be reasonably clear that (fn)
converges pointwise to the discontinuous function

H(x) =


0 x ≤ 1

2

1
1

2
< x.

(the Heavyside function shifted to the right by 1
2
). But what if, like in the case of xn we

could find some other function f(x) which was continuous, and for which d2(fn, f) → 0
as n → ∞? We claim no such function can exist. To see this, suppose that there was
such a function, call it f(x). Then by properties of the definite integral, f(x) ≡ 0 on
an uncountable number of points in the interval [0, 1

2
], and f(x) ≡ 1 on an uncountable

number of points in the interval [1
2
, 1], and f(x) could only take a value different from

0 or 1 on a countable number of points in the interval from [0, 1] (otherwise the limit
d2(fn, f) 6→ 0). However, we have assumed that f(x) is a continuous function, and it
takes the value of 0 somewhere in the interval, and 1 somewhere in the interval, so by
the intermediate value theorem, it must take every other value, however, there are an
uncountable number of these, and f(x) can only be different from 0 and 1 on at most a
countable number of points, a contradiction. So we can conclude that (C0[0, 1], d2) is not
complete.
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So (C0[0, 1], d2) is not a complete metric space, and we have another example of a
space that isn’t complete. However, there is still hope for the metric space (C0[0, 1], d∞),
because the sequences (xn) and fn(x) aren’t Cauchy in regards to this metric (we showed
this for (xn), can you show it for fn(x)?). In fact, we have the following proposition.

Proposition 3.2. The metric space (C0[a, b], d∞) is complete.

Proof. Suppose that (fn) ⊂ (C0[a, b], d∞) was a Cauchy sequence. Then for each x0 ∈
[a, b] we have that fn(x0) is a Cauchy sequence of real numbers. Since R is complete,
we have that this sequence converges to a real number say yx0 . Define the limiting
function f : [a, b] → R by f(x0) = yx0 . Now we have to show that this function is
continuous. That is for any fixed x0 ∈ [a, b], and for any ε > 0, we can choose δ so that
|y − x0| < δ ⇒ |f(y) − f(x0)| < ε. To see this, we add zero and appeal to the triangle
inequality, and then the definition of a Cauchy sequence in this metric. Observe that

|f(y)− f(x0)| = |f(y)− fn(y) + fn(y)− fn(x0) + fn(x0)− f(x0)|
≤ |f(y)− fn(y)|+ |fn(y)− fn(x0)|+ |fn(x0)− f(x0)|.

Now (fn) is Cauchy in the sup norm which means that there is an N so that for m,n ≥ N
we have that

sup
x∈[a,b]

|fn(x)− fm(x)| < ε

3
.

In particular letting m→∞ this means that if n ≥ N

sup
x∈[a,b]

|fn(x)− f(x)| < ε

3
.

But this means that for all x ∈ [a, b] we can choose N so that if n ≥ N we have that

|f(x)− fn(x)| ≤ sup
x∈[a,b]

|f(x)− fn(x)| ≤ ε

3
.

Now we choose δ so that if |y − x0| < δ we have that |fN(x0) − fN(y)| < ε
3

(we can do
this because each of the fn’s are continuous). But this is all we need, now we put this
together and we see that if |y − x0| < δ then

|f(y)− f(x0)| ≤ |f(y)− fN(y)|+ |fN(y)− fN(x0)|+ |fN(x0)− f(x0)|

≤ ε

3
+
ε

3
+
ε

3
= ε.

�

A quick recap of what we’ve established.

(1) (R, | · |) is complete (by Axiom of Mathematics). And consequently so is (Rn, ‖·‖).
(2) (C0[a, b], d∞) is complete.
(3) (Q, | · |) is not complete.
(4) (C0[a, b], d2) is not complete.

4. The Contraction Mapping Theorem

‘Recall’ that a metric space (X, d) is called complete if every Cauchy sequence in it
converges to an element in the space. Suppose we have a map f : X → X from a
complete metric space (X, d) to itself.

Definition 4.1. We call f a contraction if we can find a c < 1 such that

d(f(x), f(y)) ≤ c d(x, y)

for all x, y ∈ X.
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Example 4.1 (Linear maps). Suppose we consider a linear map (a line) f : R→ R (with
the usual metric d(x, y) = |x− y|) with f(x) = mx+ b where m and b are real constants.
When is f a contraction? We have that |f(x)− f(y)| = |mx + b−my − b| = |m||x− y|
so we can see right away that f(x) will be a contraction if and only if |m| < 1.

Example 4.2. Now for a slightly more complicated example. Supose we consider the
function f(x) = 3

√
x = x

1
3 . Is this function a contraction? The answer is no, and we’ll

discuss why in two different ways. The first is by direct calculation. Choose a u, v ∈ R
so that u3 = x and v3 = y. Since x, y are real numbers this is always possible. We then
have

|f(x)− f(y)| = |x
1
3 − y

1
3 | = |u− v| and

|x− y| = |u3 − v3| = |u− v||u2 + uv + v2|

So we just need to choose u and v so that
1

|u2 + uv + v2|
> 1 and we’re in business. For

example if we choose u = 0 and v =
1

10
then x = 0 and y =

1

1000
and we have that

|f(x)− f(y)| = 1

10
= 100|x− y|,

so f is not a contraction.
Another way to show that f(x) is not a contraction is slightly more oblique, but will

aid us in our discussion of things later. We can rewrite the definition of a contraction for
x 6= y as:

|f(x)− f(y)|
|x− y|

≤ c,

and we see that the left hand side is a difference quotient. So if we can bound the slope of
the secant lines by 1 then we have a contraction. In particular, if we have a C1 function
and we can bound the derivative by 1, then we have a contraction. Observe that in this

case, we have that f ′(x) =
1

3
x−

2
3 which is unbounded on R and in particular is strictly

greater than 1 on the interval (0, 1) and so we don’t have a contraction. (We will return
to an idea similar to this later).

The reason that we’re interested in contraction maps is the following:

Theorem 4.1 (Contraction Mapping Theorem). Suppose that f : X → X is a contraction
from a complete metric space to itself, with contraction constant c < 1. Then f has a
unique fixed point. That is there exists a unique x∗ ∈ X such that f(x∗) = x∗.

Prrof 1. The first proof of the contraction mapping theorem (or sometimes it’s called the
contraction mapping principle) shows how intuitive it really is: Simply pick a map (the
english word) of a place that contains the point where you are standing. The place the
map on the floor. It is obvious that there is one and only one point on the map that is
exactly on top of where it is on the floor. �

Proof 2. While the above proof highlights how intuitive the contraction mapping principle
is - it is perhaps not in the style to which mathematicians are accustomed. So we will
also prove the contraction mapping principle by iterating the map f(x). Let d denote the
metric on the complete space X then we chose any initial value x0 and define a sequence
xn = f(xn−1). We will show that xn defined this way is Cauchy. First we have that

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ cd(xn, xn−1) ≤ c2d(xn−1, xn−2) ≤ · · · ≤ cnd(x1, x0).
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Now the triangle inequality says that for any m > n we have that

d(xm, xn) ≤
m−1∑
i=n

d(xi+1, xi) ≤
m−1∑
i=n

cid(x1, x0)

=
1− cm−n

1− c
cnd(x1, x0) ≤ Kcn

where the last line follows from the expression for partial sums in the terms of a geometric

series, and K =
d(x1, x0)

c− 1
is a fixed constant. Now since c < 1 we have that for any ε > 0,

we have an N such that for all m,n > N we have that d(xm, xn) < KcN < ε. So our
sequence is Cauchy. Now since X is complete, we have that our sequence must converge
to an x∗ ∈ X. The claim is that x∗ is our unique fixed point.

To see this, choose N large enough so that d(xn, x∗) < ε for all n > N = N(ε) for an
arbitrary ε. Then we have that

d(f(x∗), x∗) ≤d(f(x∗), xn+1) + d(xn+1, x∗) = d(f(x∗), f(xn)) + d(xn+1, x∗)

≤c d(x∗, xn) + d(xn+1, x∗) ≤ ε(c+ 1)

And since this is true for all ε > 0 we have that d(f(x∗), x∗) = 0 and x∗ is a fixed point.
To see that this is unique, suppose we had another fixed point y∗, then

d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ c d(x∗, y∗)

The only way that this is possible is if d(x∗, y∗) = 0 and so our fixed point is unique. �

Now we want to consider the implications of the contraction mapping principle on
function spaces. We’ll cover two examples - one that is fairly straightforward, and one
that is more exotic. We’ll begin with the straightforward one.

Example 4.3. We let X = C0(S1) be the set of continuous periodic functions f : R→ R
of period 1. That is f : R→ R and f(x+ 1) = f(x) for all x ∈ R. You can also view this
as the set of functions f : [0, 1]→ R where f(0) = f(1) and then extending f to all of R
by periodicity. This metric space is complete with respect to the metric induced from the
sup norm which in this case reduces to

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|

because of periodicity. We define a transformation (map) on X as follows T : X → X by

T (f)(x) =
1

2
f(2x). To see that this is a contraction, observe that

d(T (f)(x), T (g)(x)) = sup
x∈[0,1]

|1
2

(f(2x)− g(2x))| ≤ 1

2
sup
x∈[0, 1

2
]

|f(2x)− g(2x)|

≤1

2
sup
x∈[0,1]

|f(x)− g(x)|.

So we must have a fixed point. According to the contraction mapping principle, we can
start with any initial condition and it will converge to the fixed point. Let’s pick a function
that makes computations relatively straightforward. Define a sequence u0(x) = sin(2πx),
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Figure 8. Plots of the sequence ui(x) for i = 0, 1, 2, 4. It is pretty clear
that this is shrinking (fast) to 0 on all of [0, 1].

and un(x) = T (un−1)(x). Then we have

u0(x) = sin(2πx)

u1(x) =
1

2
sin(4πx)

u2(x) =
1

4
sin(8πx)

...

un(x) =
1

2n
sin(2n+1πx)

And we can see that

lim
n→∞

sup
x∈[0,1]

|un(x)| = 0

so that the fixed point of our contraction is 0. For a graphical representation of what’s
going on, see Figure 8.

Example 4.4. So that example is a bit mundane. For a more exotic example let’s define
the transformation on the same space C0(S1) only this time define the map

T (f)(x) = cos(2πx) +
1

2
f(2x).

Just as before we claim that this is a contraction (you should verify this yourself). What
is its fixed point? To find it we follow the same iterative procedure. Let f0(x) = sin(2πx)
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Figure 9. A plot of the Weierstrass function. It is (uniformly) continuous
on [0, 1], but not differentiable anywhere.

and define a sequence by fn(x) = T (fn−1)(x). Then we have

f0(x) = sin(2πx)

f1(x) = cos(2πx) +
1

2
sin(4πx)

f2(x) = cos(2πx) +
1

2
cos(4πx) +

1

4
sin(8πx)

f3(x) = cos(2πx) +
1

2
cos(4πx) +

1

4
cos(8πx) +

1

8
sin(16πx)

...

fn =
n−1∑
j=0

1

2j
cos(2j+1πx) +

1

2n
sin(2n+1πx)

The last term in the expression goes to 0 by the previous example and we are left with
the limit of our sequence (which is the fixed point of our contraction) is

f∗ =
∞∑
j=0

1

2j
cos(2j+1πx).

This function is easy enough to plot (see figure 9). What is nice about the contraction
mapping principle is that we know that this function must be continuous (and even
uniformly continuous) on [0, 1]. However, this function is pretty exotic: while being
uniformly continuous, it is in fact nowhere differentiable. This function was introduced
by K. Weierstrass in the 19th century, and serves as a good reminder of the ‘space’ that
exists between C0 and C1 functions.

Example 4.5. Here is another exotic example. We consider the space of continuous
functions on [0, 1], but with the restriction that f(0) = 0 and f(1) = 1, again with the
supremum metric. Again, we claim that this space is a complete metric space. The
proof is the same as for (C0[a, b], d∞), only you need to verify that the limit function
also satisfies the end point conditions. Alternatively, you can argue that the condition
f(0) = 0 is closed (it’s complement is open, can you show this?), and then the last tutorial
question from week 7 will give you the result. Next we are going to construct a map from

17 c©University of Sydney



R Marangell Part II - Existence and Uniqueness of ODES

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 10. The graphs of the first three iterates u0,1,2(x) in the sequence
defined by the transformation eq. (4.1)

the space of such functions to itself as follows

(4.1) T (u)(x) =



1

2
f(3x) 0 ≤ x ≤ 1

3

1

2

1

3
≤ x ≤ 2

3

1

2
+

1

2
f(3x− 2)

2

3
≤ x ≤ 1.

Next we observe that this map is a contraction. We have

d(T (f)(x), T (g)(x)) = sup
x∈[0,1]

|T (f)(x)− T (g)(x)|

=
1

2
max

{
sup

x∈[0,1/3]
|f(3x)− g(3x)|, sup

x∈[2/3,1]
|f(3x− 2)− g(3x− 2)|

}
=

1

2
sup
x∈[0,1]

|f(x)− g(x)|.

So we must have a fixed point. We follow the same iterative procedure as before to find
the fixed point. We let u0(x) = x, and let un(x) = T (un−1)(x). The fixed point will then
be

u∗(x) = lim
n→∞

un(x).

Writing down an explicit formula for u∗(x) is a little bit messy, however graphically it is
pretty straightforward to see what is going on. See figs. 10 and 11.

Why is this limit function exotic? Well for starters, it is constant almost everywhere.
This idea can be made precise, but for now, consider the length of the set where the
function is constant. u1(x) is constant (i.e. the derivative u′1(x) = 0) on a set whose

length is 1− 2
3
. Similarly, u2(x) is constant on a set of length 1−

(
2
3

)2
, and indeed un(x)

is constant on a set of length 1 −
(
2
3

)n
. But this means that u∗(x) is constant on a set

of length 1. But it is continuous. And increasing from 0 to 1! This means that it takes
an uncountable number of values on a set of zero length. You might recognise the set
of points where u∗(x) is non-constant is the Cantor set, or the Cantor middle thirds set.
This is an uncountable set, that has no length. It is also one of the earliest examples of a
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Figure 11. The so-called ‘Devil’s staircase’. This function is monotone
increasing from 0 to 1 but is constant on a set of ‘length’ one.
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Figure 12. A zoom in of the Devil’s staircase, notice that the graph looks
the same, even though the x and y values are significantly smaller

fractal. Because of the way that we defined this function, its graph is also a fractal, and
as such, it exhibits what is called self-similarity. That is, the function ‘looks’ like itself,
on very different scales. Compare the axes lables in figs. 11 and 12, to see what I mean.

Lastly, this is an example of a continuous function which is not equal to the integral of
its derivative, that is

u∗(x) 6=
∫
u′∗(x)dx.

The derivative is not defined on an uncountable number of points, but it is defined on a
set of length 1, and on this set u′∗(x) = 0 in a perfectly valid way. Lastly,

5. Lipschitz Continuity

Now we’re going to push a little bit further into the realm between C0 and C1 func-
tions. From Example 4.2, when we were investigating whether or not f(x) = x

1
3 was a

contraction, we wrote out the difference quotient
|f(x)− f(y)|
|x− y|

and we were investigating

whether or not it was less than or equal to a constant c < 1. If we are interested in
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investigating functions which are continuous, but not maybe not differentiable, we can
ask if the difference quotient is bounded? To this end we have the following definition:

Definition 5.1. Let E ⊆ Rn be a subset of Euclidean space. We say a function f : E →
Rn is Lipschitz continuous (or just Lipschitz) if there exists a constant K <∞ such that
the following holds for all x, y ∈ E

|f(x)− f(y)| ≤ K|x− y|.
The smallest such constant K is called the Lipschitz constant (of f on E).

Lipchitz functions may not be differentiable, but they are ‘close’. For example, let’s
consider the function f : R → R with f(x) = |x|. This function is not differentiable at
x = 0, but we still have that

|f(x)− f(y)| = ||x| − |y|| ≤ |x− y|
by what’s called the reverse triangle inequality. So our function is Lipschitz continuous
with Lipschitz constant K = 1. Alternatively, we have that the derivative of |x| apart
from at x = 0 is ±1 and so all of our difference quotients

|f(x)− f(y)|
|x− y|

are bounded. Incidentally, this gives you a sort of straightforward way to determine
whether a function which is C1 except for at a finite number of places is Lipschitz.

Question. Is the Weierstrass function Lipschitz continuous? Why or why not? If it is
what’s the Lipschitz constant?

A nice geometric interpretation of Lipschitz continuous is that the slope of the line (in
R2n) between the points (x, f(x)) and (y, f(y)) is bounded by K for all x, y ∈ E. One
way to think about this is that, a Lipschitz function is ‘continuous +’. This means that
they have all the properties of continuous functions, ‘plus’ a little bit more, in the sense
that hey share a few properties with differentiable functions. (Though not all). The first
part of this sentence is proved in the following proposition:

Proposition 5.1. If f : E → Rn is a Lipschitz continuous function, then f is continuous.

Proof. The proof is just chasing definitions until we arrive at the result. Fix any x ∈ E ⊆
Rn and then for any ε > 0 we choose a y such that |x− y| < ε

K
= δ. Then if y ∈ Bδ(x)

we have |f(x)− f(y)| < K|x− y| < ε. �

Often times Lipschitz continuity is too strong a result to require, so we introduce a
weaker notion now:

Definition 5.2. A function f : E → Rn on a subset E ⊆ Rn is said to be locally Lipschitz
(on E) if for all x ∈ E, there is an r > 0 such that f is Lipschitz on Br(x) the closed ball
of radius r around x.

The idea is that for each x ∈ E the Lipschitz constant K can vary with x, and K(x)
can get arbitrarily large on E. We also have the following proposition:

Proposition 5.2. Suppose that f is C1 on an open set E. Then f(x) is locally Lipschitz.

Proof. For any x ∈ E there is an r such that Br(x) ⊆ E. Now choose a y 6= x but such

that y ∈ Br(x). Then the line between x and y which is given as ξ(s) = y + s(x− y) will

be in Br(x) when s ∈ [0, 1]. By the Fundamental Theorem of Calculus we have

f(x)− f(y) =

∫ 1

0

d

ds
f(ξ(s))ds =

∫ 1

0

Df(ξ(s))(x− y)ds,
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where the last equality follows from the chain rule and the definition of ξ(s). Now since
f is C1 on E we have that ||Df ||, the norm of the Jacobian matrix (using the matrix

norm from the first tutorial) is continuous and bounded on Br(x). Therefore, if we let
K = max

y∈Br(x)
||Df(y)|| then we have that |f(x)− f(y)| ≤ K|x− y|. �

Note that this last proof also gives you a handle on what the Lipschitz constants are.
This can be quite useful.

6. Existence and Uniqueness of Solutions to ODEs

After all of these formal asides, analysis and topology, we are finally ready to discuss
the existence and uniqueness of solutions to the ODE initial value problem:

(6.1) ẋ = f(x) x(0) = x0

where x(t) : J → Rn is some vector of functions on an interval J := [−a, a] of the real
line (to be determined later) and f : E → Rn is a map from a subset of Euclidean space
E ⊆ Rn to Euclidean space. We have two fundamental questions that we are going to
address:

(1) Is there a solution to (6.1)? What sort of conditions do we need to put on x(t)
and f(x) in order to ensure this, and

(2) Is such a solution unique? That is is there more than one function which satisfies
(6.1) and which passes through the initial value x0?

In order to answer these questions, we need to reformulate equation (6.1) in an integral
form. Formally, integrating this equation and inputting the initial condition gives :

(6.2) x(t) = x0 +

∫ t

0

f(x(s))ds.

Right away we note the following lemma:

Lemma 6.1. Suppose that f ∈ Ck(E,Rn) for some k ≥ 0 and that x ∈ C0(J,E) is a
solution to (6.2). Then x ∈ Ck+1(J,E) and is a solution to (6.1).

Proof. First observe that if x(t) satisfies (6.2), then x(0) = x0. Now if x(s) is continuous

then so is f(x(s)). Moreover

∫ t

0

f(x(s))ds is in fact C1. Thus the right hand side of (6.2)

is C1 and so the left hand side is too, so x(t) is C1. Then we just lather, rinse and repeat
(proof by induction) and we’re done. �

The other (cool?) thing about the formulation of (6.1) as (6.2) is that we can look at
it as an operator acting on functions:

T (u)(t) = x0 +

∫ t

0

f(u(s))ds.

In order that T be well defined, u(t) must be chosen in some suitable function space
(say C0(J,Rn)). Since solutions to eq. (6.1) satisfy eq. (6.2), we have that a continuous
function x∗(t) will satisfy the initial value problem (6.1) if and only if it is a fixed point
of T . That is if and only if T (x∗(t)) = x∗(t). Like in the second proof of the contraction
mapping theorem we can find fixed points of our maps by iteration. In this case this is
called Picard iteration. The strategy is as follows. Pick an initial function u0(t). Define a
sequence un(t) = T (un−1)(t). (The elements of such a sequence are called Picard iterates
by the way). Write down the sequence of functions and see what you get. Let’s do a
couple of examples to get a feel for Picard iteration:
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Example 6.1. Let’s consider the initial value problem ẋ = rx where x : R → R is a
scalar function and x(0) = x0. We already know that the solution to this initial value
problem is ertx0 = x(t). Now let’s define an operator on continuous functions

T (u)(t) = x0 +

∫ t

0

ru(s)ds,

chosen as the integral operator whose right hand side is the right hand side of the integral
formulation of our initial value problem. Now define a sequence as follows u0(t) = x0 the
constant function, and un(t) = T (un−1)(t). We have

u0(t) =x0

u1(t) =x0 +

∫ t

0

rx0ds = x0(1 + rt)

u2(t) =x0 +

∫ t

0

rx0(1 + rs)ds = x0

(
1 + rt+

r2t2

2

)
...

un(t) =x0

(
n∑
j=0

(rt)j

j!

)
.

And so we see that un(t) → ertx0 as n → ∞ (not so coincidentally). Moreover we can
see that x(t) = ertx0 is in fact a fixed point of the operator T and hence a solution to
(6.2) and hence (6.1). What is also cool, and maybe not so obvious is that we don’t need
to start with u0(t) = x0 in order for this process of Picard iteration to converge on the
solution. If, for example we were to start with u0(t) = t, then we would have

u0(t) =t

u1(t) =x0 +

∫ t

0

rsds = x0 +
rt2

2

u2(t) =x0 +

∫ t

0

r

(
x0 +

rt2

2

)
ds = x0 + x0rt+

r2t3

3!
...

un(t) = x0

n−1∑
j=0

(rt)j

j!
+

rntn+1

(n+ 1)!

The right most expression in un(t) tends to zero for all t ∈ R as n → ∞ and so we have
that un(t)→ ertx0 as n→∞ this time as well.

In the above examples we needed to choose our initial function u0(t) from a ‘suitable
space’. If for example, we picked a badly behaved initial function, then we wouldn’t have
ended up with the solution to (6.1). In this case we want the integrals to all make sense,
so we’ll say that we want our initial conditions to be continuous functions of t. We also
need the right hand side of (6.1) to make sense, so we need to restrict ourselves to regions
E ⊆ Rn where |f(x)| < ∞. Neither of these turns out to be that much of a terrible
restriction.

We are now ready to state the existence and uniqueness theorem:
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Theorem 6.1 (Picard-Lindelöf). Suppose that for x0 ∈ Rn there exists an r > 0 so that

f : Br(x0) → Rn is Lipschitz with Lipschitz constant K. Then the initial value problem

(6.1) has a unique solution x(t) for t ∈ J = [−a, a] where a =
r

M
and M = max

x∈Br(x0)
|f(x)|.

Proof. The main idea is to use the contraction mapping principle. In order to do this we
need a complete metric space. We will choose (X, d) = (C0([−a, a], Br(x0)), d∞). That is
the space of continuous functions mapping the interval [−a, a] to the closed ball of radius

r about the point x0, Br(x0). The next thing we need is a contraction. Define the map
T as follows

T (u)(t) = x0 +

∫ t

0

f(u(s))ds.

We claim that T is a contraction from X → X. If the claim is true, then we have a unique
fixed point which by construction will be the solution to the initial value problem (6.1).
In order to prove the claim, we will need to show that T : X → X and that T is indeed
a contraction on X. First, if u(t) ∈ X then T (u)(t) is continuous since f is continuous.

Now, since f is Lipschitz continuous on the closed set Br(x0), it is continuous. So it must
attain its maximum somewhere on the set. Define M := max

x∈Br(x0)
|f(x)|. If t ∈ [0, a] (the

right half of the interval J , then we have the following

|T (u)(t)− x0| =
∣∣∣∣x0 +

∫ t

0

f(u(s))ds− x0
∣∣∣∣ ≤ ∫ t

0

|f(u(s))|ds ≤M |t| ≤Ma.

In order to ensure that the image of T (x)(t) is in Br(x0) (so that T maps X to itself), we
must have that the right hand side of the above inequality must not be larger than r. But

we chose a so that that a ≤ r

M
. Next we observe that the same equality (for basically

the same reasons) holds for t ∈ [−a, 0]. This shows that T : X → X. To prove that T (x)
is a contraction, we have that

|T (u)− T (v)| ≤
∫ t

0

|f(u(s))− f(v(s))|ds ≤ K

∫ t

0

|u(s)− v(s)| ≤ Kad∞(u, v).

This means that for t ∈ J , d∞(T (u), T (v)) ≤ Kad∞(u, v), so T will be a contraction when

c = Ka < 1. So we have proven the theorem for the case when a ≤ r

M
and a <

1

K
. �

We are going to move on to a couple of examples, but first a couple of remarks.

Remark. The first thing to note is that we haven’t exactly proven the statement of the
theorem. In order to remove the second constraint, (i.e. that a > 1

K
), we require some

more technology (specifically, we need either the so-called Weierstrass M test, and the
notion of uniform continuity and uniform convergence, or the so-called Bielecki norm on
a function space). But in the interest of expediency, we are going to skip this. It is
just important to know that one can in fact tighten the proof, and remove the second
constraint (the a ≤ 1

K
part), which gives the theorem, as stated above.

Remark. Another thing to note is that there is nothing particularly special about t = 0.
That is, we could have chosen any initial time t0 from which to begin our initial value
problem, and the result would have held the same. We just need to adjust the interval of
existence J = [t0 − a, t0 + a] and our map T (u) = x0 +

∫ t
t0
f(u(s))ds, but the rest of the

proof remains the same.

Remark. Finally, it is worth noting, that one can show existence under some pretty
mild conditions for f (see the Peano and Carathéodory existence theorems), and from an
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Figure 13. Plots of the (multiple) solutions to the IVP in example 1 with
ξ = 0, 1, 1.5 and 3.

applied/modelling point of view this sort of makes philosophical sense. For uniqueness
however, you really really need f to be Lipschitz at your initial condition x0. As the
following example shows.

Example 6.2. Consider the IVP

ẋ =
5

3
x

2
5 x(0) = 0.

Now this function f is not Lipschitz at x0 = 0, and so the theorem will not guarantee a
unique solution. In fact we will construct an infinite family of solutions to this IVP. First
observe that the constant solution x = 0 is a solution to the IVP. Next, use separation of
variables to see that x = t

5
3 is a solution as well. So we have two solutions to this IVP.

This is bad. But wait - it gets even worse. Indeed define the functions

xξ(t) =

{
0 if t ≤ ξ

(t− ξ) 5
3 if ξ ≤ t

for every ξ > 0. Each of these is a solution to the IVP. Figure 16 is a plot of a few values
of ξ. We have an infinite family of solutions to this initial value problem.... Why is this
bad? Well, suppose you were modelling something, and this came up. How would you
know which member of the family you would choose? How could you predict the state of
your future system based on your model, and the fact that you knew what was happening
at some initial condition?

Example 6.3. As another example of how the Lipschitz property enters into the be-
haviour of solutions, it is instructive to consider as the right hand side of eq. (6.1) a
function that is Lipschitz, but that doesn’t necessarily look like it on all scales. An
example is say

(6.3) ẋ = tanh(1000x) x(0) = x0.

This function is perfectly smooth, but if you look at it on a large scale, it appears to
be discontinuous (and hence it isn’t Lipshitz). See fig. 14. In fact eq. (6.3) has exact
solutions. They are given as

x(t) =
Arcsinh [e1000t sinh(1000x0)]

1000
.
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Figure 14. Plots of the same function tanh(1000x), on different scales.
On the large scale (left) it appears discontinuous (and hence not Lipschitz).
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Figure 15. Plots of several solutions to eq. (6.3). The solutions are very
close to zero, before ‘taking off’ to satisfy their initial condition.

What do these solutions look like? See fig. 15 for a plot of several initial conditions. What
is interesting to note is that for t < 0, these solutions are all exponentially small, and they
carry on as if they didn’t have to satisfy the Picard theorem. If you were just tracking
one (say in a model), because of the exponential factor killing off the part with the initial
condition, you wouldn’t really be able to tell when the function would ‘take off’ - that
is, the non-Lipshcitz nature of the large scale is sort of built into the solutions for times
away from t = 0. But, then as t nears zero, suddenly the solution remembers that it is in
fact a well-behaved solution and needs to satisfy its initial condition, so it ‘takes off’ and
then is recognisably different.

In Theorem 6.1 we have that we are guaranteed a solution on the interval J = [−a, a]
but can we do better? The best possible interval of existence would be if we could always
find a solution defined on all of R, and we did this for linear equations. However, for
nonlinear equations, this is generally not possible. But, even though we can’t guarantee
a solution on all of R, we can usually do better than the interval of existence guaranteed
by Theorem 6.1. We will discuss this more in Section 8.
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Example 6.4. Consider the IVP

(6.4) ẋ = x2 x(0) = x0 > 0

Now our function f(x) = x2 is Lipschitz in the ‘closed ball’ (in this case just the interval

[x0 − r, x0 + r]) Br(x0) about x0 and indeed we can show that |f(x)| ≤ |(x0 + r)2| =: M
for all the x ∈ [x0−r, x0 +r]. So Theorem 6.1 tells us that we have a solution x(t) defined

on [−a, a]. In this example, a ≤ r

M
=

r

(x0 + r)2
, so we have a solution to (7.1) defined on

[− r

(x0 + r)2
,

r

(x0 + r)2
]. We want the largest interval of definition possible, which happens

when r = x0 so in particular we have a solution defined for t ∈ [− 1

4x0
,

1

4x0
].

On the other hand, we can explicitly solve (7.1) to get that x(t) =
x0

1− x0t
which is

defined for t ∈ (−∞, 1

x0
). It is worth noting that this is quite a bit larger than what the

theorem gave us, but it is not all of R.

Before we can move on to the next module of the course, we will need a couple of more
technical theorems on the dependence of our solutions on initial conditions and the proof
of the existence of a maximal interval on which the solution to eq. (6.1) can be defined.
However, I will not be including lectures on this material. You will see it on tutorials and
perhaps on the exam, and I am including lecture notes. You should go and read it now
before moving on to the next part.

7. Dependence on Initial Conditions and Parameters

Just for completeness, ‘recall’ The Picard-Lindelhöf theorem of existence and unique-
ness (sometimes this is referred to as local well-posed-ness) of solutions to ordinary differ-
ential equations is as follows

Suppose we have our initial value problem

(∗) ẋ = f(x) x(t0) = x0

where x(t) is a vector of functions mapping some (to be determined) interval x : J →
E ⊆ Rn to Euclidean space, and f : E → Rn is some function. We have the following:

Theorem 7.1 (Picard-Lindelhöf). Suppose that for x0 ∈ Rn there is an r > 0 such that

on the closed ball of radius r around x0, f : Br(x0) → Rn is Lipschitz with constant
K (i.e. f is locally Lipschitz at x0). Then the initial value problem (∗) has a unique

solution x(t) : J → Rn, on the interval J = [t0− a, t0 + a] where the number a =
r

M
, with

M = max
x∈Br(x0)

|f(x)|.

So again, we return to our general IVP

(7.1) ẋ = f(x) x(0) = x0

and suppose that we have that f(x) is Lipschitz on a closed ball of radius r about some

point p ∈ Rn Br(x0), then we have a solution for all initial conditions y ∈ Br(x0). That
is, for each y ∈ Br(x0) we can write a solution to eq. (7.1) with x0 = y, defined on some
interval [−a(y), a(y)] (which might be a function of the initial condition!). We’ll write
x(t) = u(t; y) as a function of t and of y. Conventionally we’ll use a semicolon remind
ourselves of u’s dependence on the initial condition y but to distinguish it from the
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independent variable of the ODE. Using this notation our initial value problem eq. (7.1),
becomes a family of IVPs, one for each y ∈ Br(x0):

(7.2)
d

dt
u(t;u) = f(u(t; y)) u(0; y) = y.

The first question that arises is ‘for which values of y ∈ Br(p) will we be able to find
a common interval of definition for u(t; y) for the variable t?’ That is if we are willing to
shrink the domain of ‘niceness’ of f a little bit, can we guarantee that the u(t; y)s will all
be defined on the same interval J = [−a, a] where a only depends on f(x) and on r (and
not on y any more). The answer is given in the following theorem:

Theorem 7.2. Suppose that for a given x0 ∈ Rn there is an r such that f : Br(x0)→ Rn is
Lipschitz with Lipschitz constant K. Let M = max

x∈B(x0)
|f(x)|. Then the family of solutions

u(t; y) of eq. (7.1) exists for each y ∈ B r
2
(x0) and is unique for t ∈ [−a, a] provided a ≤ r

2M
.

Proof. The proof is basically the same as the proof of theorem 6.1. We define the complete
metric space (X, d) = ((C0[−a, a], Br(x0)), d∞) exactly as before, and the contraction for
each initial condition

Ty(u)(t) = y +

∫ t

0

f(u(s))ds

If y ∈ B r
2
(x0) and u ∈ X then Ty(u) ∈ V provided

|Ty(u)− x0| ≤ |y − x0|+
∫ t

0

|f(u(s))|ds ≤ r

2
+Ma.

In this instance, in order for T : X → X we must have that r
2

+ Ma < r, which means

that a <
r

2M
. And in order for T to be a contraction on Br(x0), we must have a ≤ 1

K
as before. Also as in the existence and uniqueness proof, we can eliminate the second
condition on a with a little more work. �

Example 7.1. Let’s return to the IVP

ẋ = x2 x(0) = x0 > 0.

On the ‘closed ball’ of radius r around x0 (the interval [x0− r, x0 + r]) we have that f(x)
is Lipschitz with Lipschitz constant K = 2(r + x0). We also have that f(x) achieves it’s

maximum of M = (r + x0)
2. Thus for all initial conditions y such that |y − x0| ≤

r

2
we

have a solution u(t; y), defined for t ∈ [− r

2(r + x0)2
,

r

2(r + x0)2
]. As before, the maximal

interval occurs when r = x0 and we have t ∈ [− 1

8x0
,

1

8x0
], which you might notice is an

interval of half of the length of the interval of definition before.
Notice that the true solution for an initial condition y ∈ B r

2
(x0) is given as

u(t; y) =
y

1− ty
which is defined for t ∈ (−∞, 1

y
) ⊃ (− 1

y
, 1
y
) so the true definition of existence is at least 8

times longer than what Theorem 7.2 guarantees. One last observation is that the previous
analysis holds even if we allow x0 → 0. In that instance (i.e. when x0 = 0), the solution
to the IVP is x(t) = 0, and subsequently is defined on all of R. We note that the intervals
of existence of solutions u(t; y) tend to all of R as y → 0.
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Now that we know that we have a family of solutions u(t; y) we would like to know how
well behaved the solutions are with respect to the y variable (depending of course on how
well behaved f(x) is ). This is in general kind of a subtle question, but luckily enough
we have a few straightforward relationships. For example if f(x) is Lipschitz, then u(t; y)
will be a Lipschitz function of y.

Theorem 7.3 (Lipschitz dependence on initial conditions). Let x0 ∈ Rn and suppose there

is an r such that f : Br(x0) → Rn is Lipschitz with constant K, and that J = [−a, a] is
the common interval of existence of solutions u : J × Br

2

(x0)→ Br(x0). Then u(t; y) the

family of solutions to the IVPs (∗) is Lipschitz in y for all t ∈ J with Lipschitz constant
eaK.

Proof. The proof is a straightforward application of the following useful lemma, called
Grönwall’s lemma, and is on your tutorial sheet for the week. �

Lemma 7.1 (Grönwall’s lemma). Suppose that g, k : [0, a]→ R are continuous functions
a > 0, k(t) ≥ 0, and suppose that g(t) obeys the functional inequality

g(t) ≤ G(t) := c+

∫ t

0

k(s)g(s)ds

for all t ∈ [0, a]. Then for all t ∈ [0, a],

g(t) ≤ ce
∫ t
0 k(s)ds.

Proof. First, since g(t) and k(t) are continuous, we have that G(0) = c, and that G(t) is
C1. Differentiating the definition of G(t) we have that

Ġ(t) = k(t)g(t) ≤ k(t)G(t)⇒ Ġ(t)− k(t)G(t) ≤ 0

Multiplying through by the integrating factor e−
∫ t
0 k(s)ds gives

d

dt

(
G(t)e−

∫ t
0 k(s)ds

)
≤ 0

Integrating gives

G(t)e−
∫ t
0 k(s)ds ≤ G(0) = c

and multiplying both sides by e
∫ t
0 k(s)ds gives the result. �

Alternatively, if g(t) were differentiable on [0, a], then Grönwall’s lemma says that if
g(t) obeys the differential inequality g′(t) ≤ k(t)g(t) it is bounded by the solution to the
differential equation. In some sense this is a stop-gap measure. It would be nice to say
that if g(t) < G(t) and they were both differentiable, then g′(t) < G′(t). This is however
not in general true, (though it is true for integration, if f(x) and g(x) are both integrable

and f(x) ≤ g(x) for all x ∈ [a, b] then
∫ b
a
f(x)dx ≤

∫ b
a
g(x)dx). But, we have Grönwall’s

lemma as the sort of best equivalent true statement.
We also have that if f(x) is C1, continuously differentiable then u(t; y) is as well. The

proof requires a bit more work, and will take us a bit far afield, so I am omitting it. But
the theorem is useful.

Theorem 7.4. Suppose f : E → Rn is a C1 function on some open set E. Then there
is an a > 0 such that the solution u(t; y) of (∗) with initial condition x0 = y is a C1

function of y for t ∈ J = [−a, a].
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Often we have extra parameters in our ODE’s whose exact values may not be precisely
known. In this case we can think of our solutions u = u(t; y, µ) where µ is the parameter.
For example if you are considering modelling a simple pendulum, you would use the
nonlinear ODE

θ̈ +
g

l
sin(θ) = 0

where θ is the displacement of the pendulum, g is the acceleration due to gravity (not
likely to change unless you’re leaving the earth as you watch your pendulum) and l is the
length of the pendulum. Now for any fixed l you can (in theory anyway) write down a
solution to this ODE (or initial value problem) u(t; θ0, l) and as you vary l, it would be
nice to know that your solution will vary nicely. It turns out that since g

l
sin(θ) is ‘nice’

for most (i.e. nonzero) values of l, then the solutions will be ‘nice’ too. In general if you
have a system of ODEs

ẋ = f(x;µ)

which is dependent on parameters, and f(x;µ) is nice enough with regards to µ at some
µ0, then you’re in business.

Theorem 7.5 (Continuous Dependence on Parameters). Suppose your function f(x;µ)

is Lipschitz on Br(x0) and is C1 in your parameters in some closed ball Bb(µ0) of some
radius b around an initial parameter µ0. Then the family of IVPs

ẋ = f(x;µ) x(0) = y

will have unique solution u(t; y, µ) for each y ∈ B r
2
(x0) on some interval J . Moreover

u(t; y, µ) will be a C1 function of µ.

For the time being, don’t get too caught up on the interval of existence J for these
sections. Typically in examples, this interval makes itself quite clear. Also we have some
theorems which allow us to extend our interval of existence a bit further than what is
guaranteed in the theorems above.

8. Maximal Intervals of Existence

Definition 8.1. The maximal interval of existence J(t0, x0) is the largest interval of time
that includes t0 for which the solution to the initial value problem (∗) exists.

If the solution can be explicitly found, then we can just compute the maximal interval.
Otherwise we can iteratively find it by repeated applications of Theorem 6.1. It turns out
that the maximal interval of existence is open.

Theorem 8.1 (Maximal Interval of Existence). Let E ⊆ Rn be an open set and f : E →
Rn be locally Lipschitz. Then there is a maximal, open interval J = (α, β) containing t0
such that the initial value problem

ẋ = f(x) x(t0) = x0

has a unique solution on x(t) : J → E.

Proof. Let’s denote by u(t; t0, x0), the solution to the initial value problem

ẋ = f(x) x(t0) = x0.

We know that for each closed ball Br0(x0) there is a solution on the interval J0 := [t0 −
a0, t0 + a0]. Indeed the theorem implies that u(t; t0, x0) ∈ Br0(x0) ⊂ E and is C1. Thus

we have that lim
t→a0

u(t; t0, x0) := x1 ∈ Br0(x0) ⊂ E. Now as E is open, and as f is locally
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Lipschitz on E, we can find another r1 such that u(t; t0 + a0, x1) i.e. the solution to the
initial value problem

ẋ = f(x) x(t1) = x1 where t1 = t0 + a0 and x1 = u(a0; t0, x0).

is unique and maps J1 := [t1−a1, t1 +a1]→ Br1(x1) ⊂ E. Note that the intersection of J0
and J1 is nonempty, and by uniqueness of solutions we have that u(t; t0, x0) = u(t; t1, x1)
on their common interval of definition J0 ∩ J1. From here (see fig. 16), it is just lather,
rinse, repeat to extend the solution to obtain a unique solution on larger and larger
intervals. Let J be the union of all such intervals, and let x(t) be the unique solution
constructed on J . Finally, J must be open, because if it were not, say J = (α, β], then we

could play the same game again: extend x(t) to β, and note that x(β) ∈ Brβ(x(β)) ⊂ E,
and we could extend x(t) to a larger interval. �

Figure 16. The maximal interval of existence is constructed by repeated
applications of Theorem 6.1

Example 8.1. This example illustrates how to practically use the ideas in Theorem 8.1
to extend the maximal interval of existence. Consider the IVP

ẋ = x3 x(0) = 1.

Now Theorem 6.1 guarantees that we have a solution x(t) defined on [−a0, a0] where
a = r

M
where M = max

|x−1|≤r
x3 = (1 + r)3. So we are trying to maximise the function

a = r
(1+r)3

where r > 0. This has a maximum of a0 = 4
27

at r = 1
2
. So we have a solution

u0(t; 0, 1) defined on [−a0, a0] = [− 4
27
, 4
27

]. Now as in the proof of Theorem 8.1, we look
at a new IVP

ẋ = x3 x(a0) = u0(a0; 0, 1) ≡ x1.
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Ordinarily, we would need to numerically approximate u0(a0; 0, 1) using MATLAB or some
other ODE evolver (you could even build one yourself if you didn’t trust MATLAB....)
but for the purposes of expediency, here we can exploit the fact that we actually know
the solution outright

f(t) =
1√

1− 2t
.

I might as well point out here that this will give us directly the maximal interval of
existence (−∞, 1

2
), however, the point of this example is to illustrate the algorithm that

is described in Theorem 8.1. We now have that we are trying to solve the IVP

ẋ = x3 x(a0) = u0(a0; 0, 1) = x1 = f(
4

27
) = 3

√
3

19

and we know from Theorem 6.1 that we have a solution u1(t;
4
27
, 3
√

3
19

), which is defined

on the interval [t1 − a1, t1 + a1] = [ 4
27
− a1, 4

27
+ a1]. Again, we want to maximise

a1 =
r

M
=

r

(3
√

3
19

+ r)3

which happens at r = 3
2

√
3
19

, giving a1 = 76
729
. Now it is just lather, rinse, repeat. We

solve the new IVP

ẋ = x3 x(t1 + a1) = x2 = f(0 +
4

27
+

76

729
) =

27

19
.

I iterated this process in Mathematica 9, using the following simple FOR loop

For[ii = 1, ii < capN+1, ii++,{x[ii] = f[Sum[a[k], {k, 0, ii - 1}]],

a[ii] = MaxValue[{r/(x[ii] + r)^3, r > 0}, r]}]

where ‘capN’ was set to 1, 3, 5, 10, 50, 100, and 500. After that it becomes pretty clear
what the right endpoint of the maximal interval of existence is going to be. Below is a
table of the values:

capN value of

capN∑
j=0

aj

1 4/27 = 0.1481
3 0.3258
5 0.4137
10 0.4851
50 0.5
100 0.5
500 0.5

So we can see pretty clearly that the right endpoint is going to stop at 1
2
. To get the left

endpoint, we just need to change the initial condition to that of the left endpoint of the
interval guaranteed by Theorem 6.1. In this case we get that the endpoint tends towards
−∞ as the following table shows:
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capN value of

capN∑
j=0

−aj

1 -0.1481
3 - 0.5891
5 -1.3302
10 -6.1990
50 - 215865
100 −9.3× 1010

This pretty much wraps our study of the existence and uniqueness of solutions to ODEs
as well as the second module of this course. We are now going to move on to the next
module of the course: 2-D nonlinear systems of ODEs.
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