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Abstract. We use the Maslov index to study the eigenvalue problem arising from the
linearisation about a standing wave in the fourth-order cubic nonlinear Schrödinger equa-
tion (NLSE). Our analysis is motivated by a recent work by Bandara et al., in which the
fourth-order cubic NLSE was shown to support infinite families of multipulse soliton solu-
tions with various symmetry properties. By using a homotopy argument, we prove a lower
bound for the number of real unstable eigenvalues. We also give a Vakhitov-Kolokolov
type stability criterion, which is sufficient to determine the spectral stability or instabil-
ity of a certain class of standing waves. The interesting aspects of this problem as an
application of the Maslov index are the instances of non-regular crossings; in particular,
we encounter crossing forms with degeneracies of both zero and nonzero rank. We handle
such degeneracies by analysing the partial signatures of higher order crossing forms, using
a definition of the Maslov index developed by Piccione and Tausk.
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1. Introduction

The fourth-order cubic nonlinear Schrödinger (NLS) equation

iΨt = −β4
24

Ψxxxx +
β2
2

Ψxx − γ|Ψ|2Ψ, (1.1)
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models the propagation of pulses in media with Kerr nonlinearity that are subject to both
quartic and quadratic dispersion [KH94,ABK94,BGBK21,TABRdS19]. Here Ψ is the slowly
varying complex envelope of the pulse, and β2, β4, and γ are real coefficients.

Solutions to (1.1) of the form Ψ(x, t) = eiβtφ(x), β ∈ R, are called standing wave solutions.
Following the convention of [BGBK21], when the real-valued wave profile φ is a homoclinic
orbit of the associated standing wave equation (see (1.5)), we will call Ψ a soliton solution of
(1.1). Karlsson and Höök [KH94] discovered an exact analytic family of soliton solutions to
(1.1) with a squared hyperbolic secant profile. Akhmediev, Buryak and Karlsson [ABK94]
observed oscillatory behaviour in the tails of solitons for certain values of β. Akhmediev
and Buryak [BA95] showed the existence of and derived a stability criterion for bound
states of two or more solitons when the single solitons have oscillating tails. Karpman and
Shagalov [Kar96,KS97,KS00] considered the extension of (1.1) to higher-order nonlinearities
and multiple space dimensions. All of these works considered the case of negative quartic
and negative quadratic dispersion, β4 < 0, β2 < 0.

More recently, (1.1) has been the focus of a number of studies following the experimental dis-
covery of pure quartic solitons (PQSs) in silicon photonic crystal waveguides [BRdSS+16].
These solitons exist through a balance of negative quartic dispersion and the nonlinear Kerr
effect, for which β2 = 0 and β4 < 0. They have attracted much attention for their potential
applicability to ultrafast lasers due to their favourable energy-width scaling [BRdSHE17,
TABRdS19]. Following the discovery of PQSs, Tam et al. [TABRdS19] numerically investi-
gated their existence and spectral stability. They also showed [TABRdS18,TABRdS20] that
PQSs and solitons of the classical second-order NLS equation, for which β4 = 0, are in fact
part of a broader continuous family of soliton solutions to (1.1) for nonpositive dispersion
coefficients β4 and β2.

Extending the work of Tam et al., in a series of works Bandara and co-authors [BGBK21,
BGBK23,BGBK25] performed a detailed study of the structure of soliton solutions of (1.1).
In [BGBK21], they used a dynamical systems approach to show that (1.1) supports infi-
nite families of multi-pulses (multi-hump solitons) for both positive and negative quadratic
dispersion (and negative quartic dispersion, β4 < 0). By seeking standing wave solutions,
they transform (1.1) into (1.5), a fourth-order Hamiltonian ODE with two reversibility sym-
metries. Solitons of (1.1) correspond to orbits of (1.5) that are homoclinic to the origin,
which the authors find and track with numerical continuation techniques. In addition to
the primary (single-hump) homoclinic orbit, which may have oscillating or non-oscillating
decaying tails, they show the existence of connecting orbits from the origin to periodic orbits
in the zero energy level (“EtoP connections”). These connecting orbits allow the construc-
tion of heteroclinic cycles: homoclinic solutions which follow an EtoP connection from the
origin to a periodic orbit, then loop n times around the periodic orbit, and finally follow
an EtoP connection back to the origin. The different combinations of EtoP connections
and the symmetry properties of the periodic orbits generate cycles that organise infinite
families of multi-hump solitons of different symmetry types (symmetric, antisymmetric and
nonsymmetric). Moreover, the authors show that there are infinitely many periodic orbits
that support EtoP connections, and, hence, a menagerie of families of homoclinic solutions
with different symmetry properties. In a subsequent work, Bandara et al. discuss connect-
ing orbits between periodic solutions (“PtoP connections”), which not only yield solutions
to periodic backgrounds, but can also be combined with EtoP connections to obtain even
more families of solitons (with oscillating but decaying tails). Since EtoP and PtoP con-
nections play a vital role in the existence and organisation of homoclinic solutions to (1.5),
and are entirely determined by the periodic orbits that exist, in [BGBK25] Bandara et al.
study the underlying periodic orbit structure of equation (1.5).
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Several authors have studied the stability of soliton solutions to (1.1). In [BGBK21], Ban-
dara et al. used numerical simulations to show that, while many of the multi-pulse solutions
they found were unstable, some were only weakly unstable, and therefore possibly observ-
able in experiments over a number of dispersion lengths. More rigorous stability analyses
were undertaken in [NP15] and [PA21]. Natali and Pastor [NP15] proved the orbital sta-
bility of the family of solutions found by Karlsson and Höök (realised as a single exact
solution to the nondimensionalised version of (1.1), see (1.3)). As observed in [NP15] (see
also [TABRdS20, §II]), this exact solution exists only for a fixed value of the frequency
parameter β, and is not part of a continuous family of solutions in that parameter. The
failure of the existence of such a family renders the classical results of Grillakis, Shatah
and Strauss [GSS87,GSS90] inadmissible since [GSS87, Assumption 2] does not hold in this
instance. Outside of the Karlsson and Höök solution, Parker and Aceves [PA21] proved
the existence of a primary single-hump soliton in certain parameter regimes of (1.1), along
with an associated discrete family of multi-hump solitons. Under certain assumptions,
they proved orbital stability of the primary pulse and spectral instability of the associated
multi-pulses.

Outside of (1.1), a number of works have investigated multi-pulses in Hamiltonian systems.
The first study was undertaken by Pelinovksy and Chugunova in [CP07], who proved the
existence and spectral stability of two-pulse solutions in the fifth order KdV equation. An
extensive study of periodic multi-pulses in the fifth order KdV equation was performed by
Parker and Sandstede [PS22]. In [KPS20], Kapitula, Parker and Sandstede used a reformu-
lated Krein matrix to study the location and Krein signature of small eigenvalues associated
with tail-tail interactions in n-pulses in first- and second-order in time Hamiltonian partial
differential equations.

In this paper, we further develop the spectral stability theory for arbitrary single and multi-
hump soliton solutions to (1.1). In particular, we seek to determine the existence of unstable
eigenvalues of the associated linear operator

N =

(
0 −L−
L+ 0

)
, (1.2)

where L+ and L− are selfadjoint fourth order operators acting in L2(R). Our results are not
confined to solitons satisfying Hypothesis 2, the first part of Hypothesis 3 and Hypothesis
4 in [PA21]. The main tool in our arsenal is a topological invariant known as the Maslov
index, a signed count of the nontrivial intersections, or crossings, of a path of Lagrangian
subspaces of R2n with a fixed reference plane. Since the Maslov index is unable to detect
complex eigenvalues, we will restrict our search to those unstable eigenvalues that are real.

Our main results are as follows. In Theorem 1.2, we provide a lower bound for the number
of positive real eigenvalues of (1.2). The bound is given in terms of the Morse indices (the
number of positive eigenvalues) of L+ and L−, denoted P := n+(L+) and Q := n+(L−),
as well as a correction term which represents the contribution to the Maslov index from
the crossing corresponding to the zero eigenvalue of N . An immediate consequence of
Theorem 1.2 is Corollary 1.5, a Jones-Grillakis type instability theorem [Jon88,Gri88,KP13]
which gives a sufficient condition on P and Q for spectral instability of the underlying
soliton. We also give a Vakhitov-Kolokolov (VK) type stability criterion [VK73, Pel11]
in Theorem 1.6, where the spectral stability of solitons for which P = 1 and Q = 0 is
determined by the sign of a certain integral.

Along the way, we prove Theorem 4.1, which equates P and Q to counts of the conjugate
points (see Definition 3.10) of the operators L+ and L−, respectively. Thus, all of the
required data for the lower bound in Theorem 1.2 occurs when the spectral parameter is
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zero. As highlighted in [BJ22], this is a convenient feature for numerical computations
that is not afforded by a calculation using the Evans function [AGJ90]. In light of this, an
alternate form of (1.19), which may be more useful for numerics, is given in Remark 5.5.

The key feature of the eigenvalue problem for N that makes it amenable to the Maslov
index is the Hamiltonian structure of the eigenvalue equations when written as a spa-
tially dynamic first order system in R8. This system therefore preserves Lagrangian planes.
Moreover, in parameter regimes which guarantee the essential spectrum of N is confined
to the imaginary axis, the first order system has an exponential dichotomy on the positive
and negative half lines. This gives rise to two-parameter families of Lagrangian planes (in
x and λ, the spatial and spectral parameters), known as the unstable and stable bundles,
comprising the solutions that decay to zero exponentially as x→ −∞ and x→ +∞, respec-
tively. These bundles are the central objects of our analysis; their nontrivial intersections
at common values x ∈ R and λ ∈ R encode the positive real eigenvalues of interest. By
exploiting homotopy invariance of the Maslov index, we will detect these eigenvalues by
instead counting conjugate points, i.e. the nontrivial intersections of the unstable bundle,
when the spectral parameter is zero, with the stable subspace of the asymptotic system.

Operators of the form of N are said [KKS04] to have the canonical symplectic structure.
While the abstract spectral theory of such operators is well studied (see, for example, [KP13,
§7] and the references therein), the soliton solutions of interest here are not in general part
of a continuous family in the frequency parameter β (as, for example, the Karlsson and
Höök solution is not). For the same reason that [GSS90] is not applicable in this instance,
this places the current problem outside the scope of the spectral theory given in [KP13, §7],
since [KP13, Hypothesis 5.2.5(f)] fails in this case. We emphasise that in this work, we
make no comment on the orbital stability of the soliton solutions of interest.

The Maslov index has been used to study the spectrum of homoclinic orbits in a number of
works [Jon88, BJ95, CJ18, Cor19, CH14, HLS18, BCJ+18, How23, How21], namely as a tool
to detect real unstable eigenvalues. If monotonicity in the spectral parameter holds, as is
often the case in selfadjoint problems [HLS18, BCJ+18, How23], then it is possible to give
an exact count of such eigenvalues in terms of the Maslov index of a Lagrangian path in
the spatial parameter. Howard, Latushkin and Sukhtayev [HLS18] proved the equality of
the Morse and Maslov indices for matrix-valued Schrödinger operators with asymptotically
constant symmetric potentials on the line, applying their results to determine the stability
of nonlinear waves in various reaction-diffusion systems. Beck et al. [BCJ+18] proved the
instability of pulses in gradient reaction-diffusion systems, generalising the instability result
for pulses in scalar reaction-diffusion equations (see [KP13, §2.3.3]). Jones [Jon88] gave a
stability criterion for soliton solutions of the cubic NLS equation with a spatially dependent
nonlinearity. Bose and Jones [BJ95] proved the stability of a travelling wave in a coupled
two-variable reaction diffusion system with diffusion in one variable, in which they used
the Maslov index to locate eigenvalues in gradient systems. Chen and Hu [CH14] proved
stability and instability criteria for standing pulses in a doubly-diffusive FitzHugh-Nagumo
equation. Chardard, Dias and Bridges [CDB09b, CDB09a, CDB11] developed numerical
tools to compute the Maslov index and study the stability of homoclinic orbits in Hamilton-
ian systems. Cornwell and Jones [Cor19, CJ18] analysed travelling waves in skew-gradient
systems. In their work, despite not having a Hamiltonian structure the eigenvalue equations
preserve Lagrangian planes for a nonstandard symplectic form. By showing monotonicity
in the spectral parameter [Cor19] and computing the Maslov index at all conjugate points
in the travelling wave co-ordinate, they proved [CJ18] the stability of a travelling pulse in
a doubly diffusive FitzHugh-Nagumo system.
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The current problem is distinguished from previous works by the presence of non-regular
crossings. In their work [RS93], Robbin and Salamon require that all crossings be regu-
lar i.e. that the crossing form is nondegenerate. This is then topologically extended to
all continuous Lagrangian paths (i.e. to those with non-regular crossings) via homotopy
invariance. As pointed out in [GPP04b, GPP04a], one issue with extending the definition
in this way is the destruction of potentially important information encoded in any non-
regular crossings. For example, in the present paper, it turns out that the contribution of
the crossing corresponding to the zero eigenvalue of N , which is non-regular with respect
to the spectral parameter, is determined by the kernel and generalised kernel of N . It is
not clear how a homotopy argument would capture the same information. Additionally,
the technical details of perturbing the path typically requires breaking the structures that
generate the path in the first place, making analytical calculations of such perturbations
difficult.

We therefore use the approach of [PT08] to locally compute the Maslov index directly
through the use of higher-order crossing forms. These generalise the (first-order) cross-
ing form defined in [RS93], and allow us to calculate the contribution to the Maslov in-
dex from non-regular crossings without perturbative arguments. In their work, Deng and
Jones [DJ11] derived a second order crossing form in the case where the crossing form was
identically zero. This was recently extended in [BJP24] to the cases when all lower-order
forms are identically zero. Our formulas, adapted from [PT08,GPP04a], do not require this
assumption. Moreover, we do not write the Lagrangian path locally as the graph of an in-
finitesimally symplectic matrix, instead relying solely on the construction of root functions
and degeneracy spaces (see Section 3.1).

Specific instances of non-regular crossings in the present paper include the conjugate point
at the top left corner of the Maslov box, which corresponds to the zero eigenvalue of N , as
well as crossings in the spatial parameter. For the former, we find that the crossing form
in the spectral parameter is identically zero; this is a feature of eigenvalue problems for
operators with the canonical symplectic structure [CCLM23]. For crossings in the spatial
parameter, the crossing form is degenerate, but in general not identically zero, and so the
approaches of [DJ11, CCLM23, BJP24] do not apply. This phenomenon appears to be the
result of the eigenvalue equations being fourth order, and has been encountered in [How21,
How23]. There, the authors circumvented the issue via a semi-definiteness argument; in
the present setting, we elect to use higher order crossing forms in an effort to generalise
previous efforts with degenerate crossing forms.

In [CCLM23], a similar lower bound to that in Theorem 1.2 was derived for an eigenvalue
problem of the form of (1.14) on a compact interval, where L± are Schrödinger operators.
In that work, the correction term was computed via an analysis of the eigenvalue curves,
which represent the evolution of the eigenvalues as the spatial domain is shrunk or expanded.
That the spatial domain is the whole real line in the present setting precludes the approach
taken in [CCLM23], where the technical details required the spatial domain to be compact.

1.1. Statement of main results. Following [BGBK21, TABRdS20, TABRdS19], we will
treat the case of negative quartic dispersion, β4 < 0, nonzero quadratic dispersion β2 6= 0
and positive Kerr nonlinearity γ > 0, giving rise to the following nondimensionalised version
of (1.1)

iψt = ψxxxx + σ2ψxx − |ψ|2ψ, (1.3)

where ψ : R×R→ C and σ2 = signβ2. (For the transformations used to obtain (1.3) from
(1.1) for β4 < 0, β2 6= 0, we refer the reader to [BGBK21, Table 1].) The modifications
needed to treat pure quartic solitons for which β2 = 0 will be given in Section 7.
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Our focus will be to determine the spectral stability of standing wave solutions

ψ(x, t) = eiβtφ(x), φ(x) ∈ R, (1.4)

to (1.3), subject to perturbations in L2(R;C). Substituting (1.4) into (1.3) shows that the
wave profile φ satisfies the standing wave equation

φ′′′′ + σ2φ
′′ + βφ− φ3 = 0. (1.5)

Using the change of variables

φ1 = φ′′ + σ2φ, φ2 = φ, φ3 = φ′, φ4 = φ′′′, (1.6)

we may write (1.5) as the first order Hamiltonian system
φ′1
φ′2
φ′3
φ′4

 =


φ4 + σ2φ3

φ3
φ1 − σ2φ2

−σ2φ1 + φ2 − βφ2 + φ32

 . (1.7)

Motivated by the families of homoclinic orbits discovered in [BGBK21], we consider orbits
of (1.7) that are homoclinic to the origin, which correspond to soliton solutions of (1.3).
An example is given by the exact solution found by Karlsson and Höök [KH94],

φKH(x) =

√
3

10
sech2

(
x

2
√

5

)
, (1.8)

which solves (1.5) for the specific values β = 4/25 and σ2 = −1.

We will assume that the origin in (1.7) is hyperbolic. Noting that the eigenvalues µ of the
linearisation about the origin solve

µ2 =
1

2

(
−σ2 ±

√
1− 4β

)
(1.9)

(where we used that σ22 = 1), hyperbolicity holds provided{
β > 0 if σ2 = −1

β > 1
4 if σ2 = 1.

(1.10)

For reasons soon to be discussed, in the first part of (1.10) we additionally require

β 6= 1

4
if σ2 = −1. (1.11)

Linearising (1.3) by substituting the complex-valued perturbation

ψ(x, t) =
[
φ(x) + ε (u(x) + iv(x)) eλt

]
eiβx (1.12)

for u, v ∈ L2(R;R) into (1.3), collecting O(ε) terms and separating into real and imaginary
parts leads to the following linearised dynamics in u and v:

−u′′′′ − σ2u′′ − βu+ 3φ2u = λv

−v′′′′ − σ2v′′ − βv + φ2v = −λu.
(1.13)

We can write (1.13) as the spectral problem

N

(
u
v

)
= λ

(
u
v

)
, (1.14)

where N is the unbounded and densely defined linear operator

N =

(
0 −L−
L+ 0

)
,

{
L− = −∂4x − σ2∂2x − β + φ2,

L+ = −∂4x − σ2∂2x − β + 3φ2,
(1.15)
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with

dom(N) = H4(R)×H4(R), dom(L±) = H4(R). (1.16)

Our goal is to determine whether the spectrum of N intersects the open right half plane.
Because N is Hamiltonian, its spectrum has four-fold symmetry in C, and instability follows
from any part of the spectrum lying off the imaginary axis. We will see in Section 2 that
the essential spectrum of N is confined to the imaginary axis and bounded away from the
origin under (1.10). Since our symplectic analysis requires that the eigenvalue parameter
be real, our task, then, will be to detect positive real point spectrum of N . Our main result
is a lower bound for this spectral index in terms of the Morse indices of the operators L±,
which are selfadjoint with the domain (1.16) (see, for example, [Wei87]). The Morse indices
of L± are only well-defined if their essential spectra are confined to the negative half line,
and we show in Section 2 that this is indeed the case provided both (1.10) and (1.11) hold.

We point out that the equation L−φ = 0 is just (1.5), and, differentiating (1.5) with respect
to x, we have L+φx = 0. Thus

0 ∈ Spec(L−) ∩ Spec(L+) (1.17)

with φ ∈ ker(L−) and φx ∈ ker(L+). We make the following simplicity assumption.

Hypothesis 1.1. ker(L−) = span{φ} and ker(L+) = span{φx}.

Notice that when λ = 0, the eigenvalue equations (1.14) decouple into two independent
equations, L−v = 0 and L+u = 0, so that ker(N) = ker(L+) ⊕ ker(L−). Hypothesis 1.1
therefore implies that ker(N) = span{(φx, 0)>, (0, φ)>}.

Let us denote

P := #{positive eigenvalues of L+},
Q := #{positive eigenvalues of L−},

n+(N) := #{positive real eigenvalues of N},
and define the quantities

I1 :=

∫ ∞
−∞

φx v̂ dx, I2 :=

∫ ∞
−∞

φ û dx, (1.18)

where v̂ is any solution in H4(R) to −L−v = φx and û is any solution in H4(R) to L+u = φ.
Under Hypothesis 1.1 and the conditions (1.10)–(1.11), our main result is the following.

Theorem 1.2. Suppose I1, I2 6= 0. The number of positive, real eigenvalues of the operator
N satisfies

n+(N) ≥ |P −Q− c|, (1.19)

where

c =


1 I1 > 0, I2 < 0,

0 I1I2 > 0,

−1 I1 < 0, I2 > 0.

(1.20)

Remark 1.3. The equations −L−v = φ′ and L+u = φ each satisfy a solvability condition
that guarantees the existence of solutions û and v̂. In the case that either I1 or I2 vanishes,
an extra calculation is needed to compute the correction term c (the definition of which is
given in (3.46)); for details, see Section 7). Finally, our theorem will also hold in the case
of any integer power-law nonlinearity in (1.3) as studied in [KS97,KS00], i.e. in the case of
standing wave solutions to

iψt = ψxxxx + σ2ψxx − |ψ|2pψ, p ∈ Z+. (1.21)



8 MITCHELL CURRAN AND ROBERT MARANGELL

(See Remark 4.5.) However, with the standing wave solutions of [BGBK21] in mind, we
have stated our results for the cubic case.

Remark 1.4. In this work we make no comment on the existence of soliton solutions to
(1.3) (i.e. orbits homoclinic to the origin in (1.7)). Rather, we prove that if such a solution
exists, then its associated linearised operator N satisfies Theorem 1.2.

The following Jones-Grillakis instability theorem [Jon88,Gri88,KP13] is an immediate con-
sequence of Theorem 1.2.

Corollary 1.5. Standing waves for which P −Q 6= −1, 0, 1 are spectrally unstable.

We also have the following Vakhitov-Kolokolov type criterion [VK73,Pel11].

Theorem 1.6. Suppose P = 1 and Q = 0. The standing wave ψ̂ is spectrally unstable if
I2 > 0 and is spectrally stable if I2 < 0.

Remark 1.7. If there exists a C1 family of solutions β → ∂βφ(x;β) ∈ H4(R) to the
standing wave equation, then û = ∂βφ(x;β) and the integral I2 is precisely that appearing
in the Vakhitov-Kolokolov criterion for standing waves in the classical (second-order) NLS
equation (see [Pel11, §4.2]), i.e.

I2 =
1

2

∂

∂β

∫ ∞
−∞

φ2dx. (1.22)

We note, however, that in general this is not the case; for example, the Karlsson and Höök
solution (1.8) is not a member of a smooth family of solutions β 7→ φ(·;β), since there is
no solution of the form of (1.8) to (1.5) for β 6= 4/25, as observed in [NP15].

The paper is organised as follows. In Section 2 we write down the first order system
associated with (1.14), and compute the essential spectra of the operators L−, L+ and
N . We also define the stable and unstable bundles, the main objects of our analysis. In
Section 3, we provide some background material on the Maslov index which includes the
definition of higher order crossing forms due to Piccione and Tausk [PT08], before setting
up the homotopy argument that will lead to the proof of the lower bound in Theorem 1.2.
In Section 4 we use the Maslov index to prove that the Morse index of each of the operators
L− and L+ is equal to the associated number of conjugate points (defined in Section 3). In
Section 5, we prove Theorems 1.2 and 1.6. In Section 6 we apply our theory to confirm the
spectral stability of the Karlsson and Höök solution (1.8), which will involve numerically
computing the number of conjugate points of the associated operators L− and L+. In
Section 7 we give some concluding remarks on our analysis, and in Appendix A we complete
the proof of Theorem 4.1 via the removal of a certain hypothesis used in the proof in
Section 4.

2. Set-up

We first compute the essential spectra of the operators L±, N . Using the change of variables

u1 = u′′ + σ2u, u2 = u, u3 = u′, u4 = u′′′,

v1 = v′′ + σ2v, v2 = −v, v3 = −v′, v4 = v′′′,
(2.1)
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we convert (1.13) to the (infinitesimally symplectic) first order system

u1
v1
u2
v2
u3
v3
u4
v4



′

=



0

σ2 0 1 0
0 −σ2 0 1
1 0 0 0
0 1 0 0

1 0 −σ2 0
0 −1 0 −σ2
−σ2 0 α(x) λ

0 −σ2 λ η(x)

0





u1
v1
u2
v2
u3
v3
u4
v4


, (2.2)

where

α(x) := 3φ(x)2 − β + 1, η(x) := −φ(x)2 + β − 1.

Setting

B =


σ2 0 1 0
0 −σ2 0 1
1 0 0 0
0 1 0 0

 , C(x;λ) =


1 0 −σ2 0
0 −1 0 −σ2
−σ2 0 α(x) λ

0 −σ2 λ η(x)

 ,

we can write (2.2) as

wx = A(x;λ)w, (2.3)

where

w = (u1, v1, u2, v2, u3, v3, u4, v4)
>, A(x;λ) =

(
0 B

C(x;λ) 0

)
. (2.4)

The asymptotic system for (2.2) is given by

wx = A∞(λ)w, (2.5)

where

A∞(λ) := lim
x→±∞

A(x, λ).

(The endstates as x → ±∞ are the same because φ is homoclinic to the origin.) It now
follows from [KP13, Theorem 3.1.11] that the essential spectrum of N is given by the set of
λ ∈ C for which the matrix A∞(λ) has a purely imaginary eigenvalue. A short calculation
shows that

Specess(N) = {λ ∈ C : λ2 = −
(
−k4 + σ2k

2 − β
)2

for some k ∈ R}. (2.6)

Under (1.10), it follows that Specess(N) ⊂ iR\{0}.

The essential spectra of the operators L± is computed similarly. The first order systems
associated with the eigenvalue equations for each of the operators L+ and L− will be given
in Section 4 (see (4.3) and (4.6)). It follows from a similar calculation on the asymptotic
matrices associated with those systems that

Specess(L±) = {λ ∈ R : λ = −k4 + σ2k
2 − β for some k ∈ R}. (2.7)

Given its biquadratic structure, if the equation in (2.7) has no real roots for k then the
essential spectra of L+ and L− will be confined to the negative half line. The equation in
(2.7) has no real roots for k if and only if the associated discriminant is positive, i.e.

16β3 − 8β2 + β = β(4β − 1)2 > 0, (2.8)

and, in addition, we have either

− 8σ2 > 0 or 4β − 1 > 0. (2.9)
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(See [Ree22], and note we have used that σ22 = 1). Both (2.8) and (2.9) are satisfied for the
values of β given in (1.10), (1.11). For these values of β we therefore have

Specess(L±) =

{
(−∞,−β) σ2 = −1,

(−∞,−β + 1
4 ] σ2 = 1,

(2.10)

so that Specess(L±) ⊂ R−. In addition to hyperbolicity of the asymptotic matrices for the
L+ and L− eigenvalue problems, the values of β given in (1.10), (1.11) will actually guar-
antee that, for all λ lying to the right of the essential spectrum in (2.10), those asymptotic
matrices have an equal number of eigenvalues with positive and negative real part.

Note that the assumptions (1.10) actually guarantee that the matrix A∞(λ) is hyperbolic,
with an equal number of eigenvalues with positive and negative real part. Precisely, the
eight eigenvalues are

±
√
−σ2 ±

√
1− 4β ± 4λi√

2
. (2.11)

We denote the corresponding four-dimensional stable and unstable subspaces by S(λ) and
U(λ) respectively.

Next, since Specess(N) ⊂ iR\{0}, the operator N − λI of (1.14)–(1.16) is Fredholm for
λ ∈ R, and it follows from [San02, §3.3] that the densely-defined closed linear operator

T (λ) : H1(R) −→ L2(R), T (λ)u :=
du

dx
−A(·;λ)u,

associated with (2.3) is also Fredholm. By [San02, Theorem 3.2, Remark 3.3], (2.2) has
exponential dichotomies on R+ and R−. That is, for each fixed λ ∈ R, on each of the
intervals R+ and R− the set of solutions to (2.2) is the direct sum of two subspaces, where
one subspace consists solely of solutions that decay (exponentially) backwards in x, and the
other of solutions that decay forwards in x. By flowing these subspaces under (2.2), each
of these families can be extended to all of R. This leads us to consider the spaces

Eu(x, λ) := {ξ ∈ R8 : ξ = w(x;λ), w solves (2.2) and w(x;λ)→ 0 as x→ −∞},
Es(x, λ) := {ξ ∈ R8 : ξ = w(x;λ), w solves (2.2) and w(x;λ)→ 0 as x→ +∞},

(2.12)

corresponding to the evaluation at x ∈ R of the spaces of solutions to (2.2) that decay
(exponentially) as x → −∞ and as x → +∞, respectively. Following [AGJ90, Cor19], we
call these sets the unstable and stable bundles respectively. For each x ∈ R and λ ∈ R, if
we consider U(λ),S(λ),Eu(x, λ),Es(x, λ) as points in the Grassmannian of four-dimensional
subspaces of R8,

Gr4(R8) = {V ⊂ R8 : dimV = 4},
which (following [Fur04,HLS17]) we equip with the metric d(V,U) = ‖PV −PU‖, where PV
is the orthogonal projection onto V and ‖ · ‖ is any matrix norm, then we have that

lim
x→−∞

Eu(x, λ) = U(λ), lim
x→+∞

Es(x, λ) = S(λ). (2.13)

That is, the orthogonal projections onto Eu(x, λ) and Es(x, λ) converge to those on U(λ)
and S(λ) as x→ −∞ and x→ +∞, respectively. This is given in [PSS97, Corollary 2].

The important feature of the system (2.2) that makes it amenable to the Maslov index is
that the coefficient matrix A(x;λ) is infinitesimally symplectic, i.e.

A(x;λ)TJ + JA(x;λ) = 0, (2.14)

which follows from the symmetry of B and C(x;λ). This is the motivation for the choice
of substitutions (2.1). Consequently, (2.2) induces a flow on the manifold of Lagrangian
planes. In particular, the stable and unstable bundles of (2.2) are Lagrangian planes of R8
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for all x and all λ. In addition we have that λ0 is an eigenvalue of N if and only if for any
(and hence all) x ∈ R we have

Eu(x, λ0) ∩ Es(x, λ0) 6= {0}.
In this case we in fact have

dimEu(x, λ0) ∩ Es(x, λ0) = dim ker(N − λ0). (2.15)

By exploiting homotopy invariance of the Maslov index, we can determine the existence of
such intersections by instead analysing the evolution of the unstable bundle Eu(x, λ0) when
λ0 = 0. This is explained in Section 3.

3. A symplectic approach to the eigenvalue problem

In this section, we give some background material on the Maslov index before describing
the homotopy argument that leads to the lower bound of Theorem 1.2.

3.1. The Maslov index via higher order crossing forms. In this section we follow the
discussions in [Arn67,RS93,GPP04a,GPP04b]. Consider R2n equipped with the symplectic
form

ω(u, v) = 〈Ju, v〉R2n , J =

(
0n −In
In 0n

)
. (3.1)

A Lagrangian subspace of R2n is one that is n dimensional and upon which the symplectic
form vanishes. We denote the Grassmannian of all Lagrangian subspaces of R2n by

L(n) := {Λ ⊂ R2n : dim Λ = n, ω(u, v) = 0 ∀ u, v ∈ Λ}. (3.2)

A frame for a Lagrangian subspace Λ of R2n is a 2n×n matrix with rank n whose columns
span Λ. Such a frame may be written in block form by(

X
Y

)
, X, Y ∈ Rn×n,

where X>Y = Y >X; the symmetry of X>Y follows from the vanishing of (3.1). Such
a frame is not unique; right multiplication by any invertible n × n matrix will yield an
alternate frame for Λ. In particular, if X is invertible then an alternate frame is given by(

I
Y X−1

)
, where

(
Y X−1

)>
= Y X−1.

Let Λ : [a, b]→ L(n) be a path in L(n). Its Maslov index is, roughly speaking, a signed count
of its intersections with a certain codimension-one set. More precisely, Arnol’d [Arn67] gave
the following definition for non-closed paths satisfying certain conditions.

Fix V ∈ L(n). The train T (V ) of V is the set of all Lagrangian planes that intersect V
nontrivially; it may be decomposed into a family of submanifolds via T (V ) =

⋃n
k=1 Tk(V ),

where Tk(V ) := {W ∈ L(n) : dim(W ∩ V ) = k} is the set Lagrangian planes that intersect
V in a subspace of dimension k. It is shown in [Arn67] that codim Tk(V ) = k(k + 1)/2; in
particular, codim T1(V ) = 1. From the fundamental lemma of [Arn67], T1(V ) is two-sidedly
embedded in L(n); that is, T1(V ) is transversely oriented by the velocity field of some (and
then of any) one-parameter positive definite Hamiltonian [Arn67, Arn85]. Such a vector
field thus defines a ‘positive’ and a ‘negative’ side of T1(V ). Define a crossing to be a value
t0 ∈ [a, b] such that Λ(t0)∩V 6= {0}, i.e. Λ(t0) ∈ T (V ). The Maslov index of any continuous
curve Λ : [a, b] → L(n) with endpoints lying off the train and with crossings lying only in
T1(V ) is then defined to be ν+− ν−, where ν+ is the number of points of passage of Λ from
the negative to the positive side of T1(V ), and ν− is defined conversely.
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Arnol’d’s definition was extended by Robbin and Salamon [RS93] to paths with arbitrary
endpoints and with crossings possibly lying in Tk(V ) for k ≥ 2. This was done by exploiting
an identification of the tangent space of L(n) at some Λ ∈ L(n) with the space S2Λ of
quadratic forms on Λ. This lead to the construction of the crossing form, a quadratic form
associated with each crossing whose signature determines local contributions to the Maslov
index. The definition given by Robbin and Salamon requires that all crossings are regular,
with the definition extended to all continuous Lagrangian paths via homotopy invariance
(see Proposition 3.4). As outlined in the introduction, it is desirable to be able to compute
the Maslov index directly, without having to use perturbative arguments.

Piccione and Tausk [PT08] provided the means to do exactly that, defining the Maslov index
for analytic Lagrangian paths with non-regular crossings via the partial signatures of higher
order crossing forms. While strictly speaking their definition is given via the fundamental
groupoid (see [PT08, §5.2]), and shown to be computable via the partial signatures listed
below, for our purposes it will suffice to use the latter computational tool as our definition of
the Maslov index. This computable formula was previously given by Giambò, Piccione and
Portaluri [GPP04b,GPP04a] through the related notion of the spectral flow of an associated
family of symmetric bilinear forms (see [GPP04b, Proposition 3.11]); for the details of the
equivalence of these definitions, see [PT08, §5.5] (in particular, Proposition 5.5.7 and §4).

The following notions can be found in [PT08, §5.5]. Suppose that Λ : [a, b] → L(n) is an
analytic path of Lagrangian subspaces, and t = t0 is a crossing, that is, Λ(t0) ∩ V 6= {0}.
A V -root function (or simply a root function when the choice of V is clear) for Λ at t = t0
is a differentiable mapping w : [t0 − ε, t0 + ε] → R2n, ε > 0, such that w(t) ∈ Λ(t) and

w(t0) ∈ V . The order of w, ord(w), is the smallest positive integer k such that w(k)(t0) /∈ V .
This allows one to define a sequence of nested subspaces Wk(Λ, V, t0), k ≥ 1, via

Wk(Λ, V, t0) := {w0 : ∃ a V -root function w for Λ with ord(w) ≥ k and w(t0) = w0}
(called the kth degeneracy space), for which we have

Wk+1(Λ, V, t0) ⊆Wk(Λ, V, t0) for all k ≥ 1, W1(Λ, V, t0) = Λ(t0) ∩ V. (3.3)

(When Λ, V and t0 are clear, we will simply write Wk.) The first fact in (3.3) follows
immediately from the definition, while the second follows from the fact that every V -root

function w has ord(w) ≥ 1. One can then define a symmetric bilinear form m
(k)
t0

(Λ, V ) :
Wk ×Wk −→ R (as in [PT08, Definition 5.5.5]),

m
(k)
t0

(Λ, V )(w0, v0) :=
dk

dtk
ω
(
w(t), v0

)∣∣∣
t=t0

, (3.4)

where w is any V -root function for Λ at t = t0 with ord(w) ≥ k and w(t0) = w0. (When

Λ and V are clear, we will simply write m
(k)
t0

.) That m
(k)
t0

is independent of the choice
of root function and therefore well-defined follows from [PT08, Corollary 5.5.4]; that it is

symmetric follows from [PT08, Lemma 5.5.3]. Using the definition of Wk and m
(k−1)
t0

, it is
straightforward to show that

Wk = kerm
(k−1)
t0

. (3.5)

In light of (3.3), it follows that Wk is simply the subspace of Λ(t0) ∩ V upon which the
crossing forms up to order k − 1 are zero.

We define the higher order generalisation of the crossing form defined by Robbin and
Salamon to be the quadratic form associated with (3.4).

Definition 3.1. The kth-order crossing form is defined to be

m
(k)
t0

(Λ, V )(w0) := m
(k)
t0

(Λ, V )(w0, w0) =
dk

dtk
ω
(
w(t), w0

)∣∣∣
t=t0

= ω
(
w(k)(t0), w0

)
(3.6)
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for w0 ∈ Wk, where w is any V -root function for Λ at t = t0 with ord(w) ≥ k and
w(t0) = w0.

To compute higher order crossing forms in the spatial parameter, we will make use of the
following fact.

Lemma 3.2. Let Z(t) be a frame for Λ(t). There exists a V -root function w for Λ at t = t0
with ord(w) ≥ k if and only if there exist k vectors {h0, . . . , hk−1} in Rn such that

i∑
j=0

(
i

j

)
Z(i−j)(t0)hj ∈ V for every i ∈ {0, 1, . . . , k − 1}. (3.7)

In this case, the kth order crossing form (3.6) is given by

m
(k)
t0

(Λ, V )(w0) =

k−1∑
j=0

(
k

j

)
ω(Z(k−j)(t0)hj , w0), w0 ∈Wk. (3.8)

Proof. Observe that if w is a V -root function, then we may write w(t) = Z(t)h(t) ∈ Λ(t)
for some smooth h : [t0 − ε, t0 + ε]→ Rn, and

wi :=
di

dti
w(t)|t=t0 =

i∑
j=0

(
i

j

)
Z(i−j)(t0)h

(j)(t0) ∈ V for every i ∈ {0, 1, . . . , k − 1}. (3.9)

Thus the vectors hj := h(j)(t0) satisfy (3.7). Conversely, suppose there exist vectors
{h0, . . . , hk−1} such that (3.7) holds. Then

w(t) = Z(t)

k−1∑
j=0

(t− t0)j

j!
hj (3.10)

is a V -root function for Λ at t = t0 with ord(w) ≥ k, as seen by differentiating w i times
for i ∈ {0, 1, . . . , k − 1} at t0. Substituting (3.10) into (3.6) yields (3.8). �

A typical application of this lemma is as follows. We first compute the first order form
using equation (3.13) below, where W1 = Λ(t0) ∩ V . For k ≥ 2, the space Wk is given via
(3.5). We then find vectors {h0, . . . , hk−1} such that (3.7) holds – in which case w given by

(3.10) is a root function – and we compute m
(k)
t0

in (3.6) via (3.8).

In the case that k = 1, for notational convenience we will drop the superscript and write
mt0(Λ, V ). Following [RS93], a crossing t = t0 will be called regular if mt0 is nondegenerate;

otherwise, t = t0 will be called non-regular. Denote by n+(m
(k)
t0

) and n−(m
(k)
t0

) the number

of positive, respectively negative, squares of m
(k)
t0

. Following [PT08, GPP04a], we call the
collection of integers

n−(m
(k)
t0

), n+(m
(k)
t0

), sign(m
(k)
t0

) = n+(m
(k)
t0

)− n−(m
(k)
t0

),

the partial signatures of (3.6). The Maslov index of the Lagrangian path Λ is then given as
follows, as in [PT08, Theorem 5.5.9] (up to the convention at the endpoints) and [GPP04b,
Proposition 3.11]. As an aside, note that it follows from the arguments in [PT08, §5.5]
(namely, Exercise 5.10, Proposition 5.5.7, Lemma 4.3.13 and Proposition 4.3.14) that if Λ
is real analytic, then all crossings are isolated.

Definition 3.3. Suppose Λ : [a, b] → L(n) is an analytic path of Lagrangian subspaces.
The Maslov index of Λ is given by
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Mas(Λ, V ; [a, b]) = −
∑
k≥1

n−

(
m(k)
a

)
+

∑
t0∈(a,b)

∑
k≥1

sign
(
m

(2k−1)
t0

)
+
∑
k≥1

(
n+

(
m

(2k−1)
b

)
+ n−

(
m

(2k)
b

))
, (3.11)

where the right hand side has a finite number of nonzero terms.

Notice that at all interior crossings t0 ∈ (a, b), only the signatures of the crossing forms of
odd order contribute; at the initial point the negative indices of crossing forms of all order
contribute; while at the final point, the negative indices of the forms of even order and the
positive indices of the forms of odd order contribute. Definition 3.3 is best understood in
terms of the formula for the spectral flow of a family of symmetric matrices. Namely, one
writes the root function as w(t) = q(t) +R(t)q(t), where q(t) ∈ V , R(t) : V →W for some
W ∈ T0(V ), Λ(t) = graphR(t) = {q + R(t)q : q ∈ V } and Λ(t0) ∈ T0(W ). One then has a
(locally defined) family of symmetric bilinear forms t 7→ ω(R(t)·, ·)|V×V for t near t0. The
derivatives of this family at t0, which coincide with (3.4), then determine the spectral flow
of the family, i.e. the net change in the number of non-negative eigenvalues, as t passes
through t0. For further details, we refer the reader to [PT08, Propositions 4.3.9, 4.3.15 and
5.5.7] and [GPP04b, Proposition 2.9, Proposition 3.11].

In [RS93], Robbin and Salamon exploit the two-sided nature of the train T (V ) of V to say
that a non-degenerate crossing passes from the ‘positive’ side to the ‘negative’ side of the
train (or vice versa) according to the signature of the crossing form. (This idea can also be
seen in the work of Arnol’d [Arn85].) Through the use of higher order crossing forms, we
extend this idea to the case where the crossing form is potentially degenerate. In the case of
one-dimensional crossings t0, i.e. Λ(t0) ∈ T1(V ), if the first nondegenerate crossing form is
of odd order, then Λ passes through the train. On the other hand, if the first nondegenerate
crossing form is of even order, then Λ departs T1(V ) in the direction in which it arrived.

It is proven in [GPP04b, Corollary 2.11] that∑
k≥1

(
n+(m

(k)
t0

) + n−(m
(k)
t0

)
)

= dim Λ(t0) ∩ V, (3.12)

so that by taking sufficiently many higher order crossing forms, a crossing t0 will always
contribute dim Λ(t0)∩V summands (the signs of which may offset each other) to the Maslov
index.

As pointed out in [GPP04a], Definition 3.3 includes, as a special case, the definition given
by Robbin and Salamon in the case that all crossings are regular. To see this, note from the
proof of Lemma 3.2 and (3.3) that, if Z(t) is a frame for Λ(t) and w0 = Z(t0)h0 ∈ Λ(t0)∩V ,
then w(t) = Z(t)h0 is a root function with ord(w) ≥ 1 and

mt0(Λ, V )(w0) = ω
(
Z′(t0)h0,Z(t0)h0

)
=
〈
Z(t0)

>JZ′(t0)h0, h0

〉
R2n

, (3.13)

just as in [RS93, Theroem 1.1]. If mt0 is nondegenerate, it follows from (3.5) that W2 = {0}
and therefore Wk = {0} for k ≥ 3. Hence m

(k)
t0

is trivial for k ≥ 2, and from (3.12) we have
n+(mt0) + n−(mt0) = dim Λ(t0) ∩ V . The Maslov index of a path Λ : [a, b] → L(n) with
only regular crossings is therefore

Mas(Λ, V ; [a, b]) = −n− (ma) +
∑

t0∈(a,b)

sign (mt0) + n+ (mb) , (3.14)

as per [RS93, §2] (modulo the convention at the endpoints).
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We will encounter three types of non-regular crossings for paths Λ : [a, b] → L(n) in our
analysis. The first is a simple interior crossing t0 ∈ (a, b) for which the first and second
order forms are zero, and the third order form is nondegenerate. In this case

Mas(Λ, V ; [t0 − ε, t0 + ε]) = signm
(3)
t0
. (3.15)

The second is a two-dimensional interior crossing for which the first order form is degenerate
but not identically zero, the second order form is degenerate, and the third order form is
nondegenerate. In this case

n+(m
(1)
t0

) + n−(m
(1)
t0

) + n+(m
(3)
t0

) + n−(m
(3)
t0

) = dim Λ(t0) ∩ V, (3.16)

and the contribution of the crossing to the Maslov index of the path is

Mas(Λ, V ; [t0 − ε, t0 + ε]) = signm
(1)
t0

+ signm
(3)
t0
. (3.17)

The final type of non-regular crossing is one occurring at the initial point t0 = a, for which
the first order crossing form is identically zero and the second order form is nondegenerate.
In this case W2 = W1 = Λ(t0)∩V , and from Definition 3.3 we have, for ε > 0 small enough,

Mas(Λ, V ; [a, a+ ε]) = −n−(m(2)
a ), (3.18)

just as in [CCLM23, Proposition 4.15] and [DJ11, Proposition 3.10].

We summarise the important properties of the Maslov index for the current analysis in the
following proposition, as in [GPP04b, Lemma 3.8] (see also [RS93, Theorem 2.3]).

Proposition 3.4. The Maslov index enjoys the following properties:

(1) (Homotopy invariance.) If two paths Λ1,Λ2 : [a, b] −→ L(n) are homotopic with
fixed endpoints, then

Mas(Λ1, V ; [a, b]) = Mas(Λ2,Λ0; [a, b]). (3.19)

(2) (Additivity under concatenation.) For Λ(t) : [a, c] −→ L(n) and a < b < c,

Mas(Λ, V ; [a, c]) = Mas(Λ, V ; [a, b]) + Mas(Λ, V ; [b, c]). (3.20)

(3) (Symplectic additivity.) Identify the Cartesian product L(n)×L(n) as a submanifold
of L(2n). If Λ = Λ1 ⊕ Λ2 : [a, b] → L(2n) where Λ1,Λ2 : [a, b] → L(n), and
V = V1 ⊕ V2 where V1, V2 ∈ L(n), then

Mas(Λ, V ; [a, b]) = Mas(Λ1, V1; [a, b]) + Mas(Λ2, V2; [a, b]). (3.21)

(4) (Zero property.) If Λ : [a, b] −→ Tk(V ) for any fixed integer k, then

Mas(Λ, V ; [a, b]) = 0. (3.22)

We will call a crossing t = t0 positive if∑
k≥1

n+(m
(2k−1)
t0

) = dim Λ(t0) ∩ V, (3.23)

and negative if ∑
k≥1

n−(m
(2k−1)
t0

) = dim Λ(t0) ∩ V. (3.24)

In light of Definition 3.3, if t0 is a positive interior crossing, or a positive crossing at the
final point t0 = b, then it contributes dim Λ(t0) ∩ V to the Maslov index. Similarly, if t0
is a negative interior crossing, or a negative crossing at the initial point t0 = a, then its
contribution is −dim Λ(t0)∩ V . Note, however, from (3.11), that with this convention, the
final crossing t0 = b may still contribute dim Λ(b) ∩ V if it is not positive, and the initial
point t0 = a may still contribute −dim Λ(a) ∩ V if it is not negative.
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Remark 3.5. In Section 4, we will need to make use of the robustness of one dimensional
sign-definite crossings. Suppose then t0 ∈ [a, b] is a one-dimensional crossing, i.e. Λ(t0) ∈
T1(V ). If t0 is positive or negative, then the lowest nonzero crossing form is of odd order,
and the order of intersection of the curve t 7→ Λ(t) with the codimension-one submanifold
T1(V ) is also odd. It follows that the crossing will persist under small perturbations in the
train T (V ). Hence, in a neighbourhood of t0, Λ will cross nearby trains T (W ) transversely
and in the same direction, for all W sufficiently close to V .

3.2. The Maslov index for Lagrangian pairs. Suppose now that we have a pair of
Lagrangian paths (Λ1,Λ2) : [a, b]→ L(n)×L(n), or a Lagrangian pair. Using the symplectic
additivity property of Proposition 3.4, it is possible to define the Maslov index of such an
object (as in [RS93,Fur04,GPP04b,PT08]), where crossings are values t0 ∈ [a, b] such that
Λ1(t0) ∩ Λ2(t0) 6= {0}. Precisely, one realises the Lagrangian pair as the path Λ1 ⊕ Λ2 in
the space L(2n) of Lagrangian planes of R4n equipped with the symplectic form

Ω((u1, u2)
>, (v1, v2)

>) = ω(u1, v1)− ω(u2, v2), u1, u2, v1, v2 ∈ R2n. (3.25)

Crossings of the pair then correspond to intersections of the path Λ1 ⊕ Λ2 : [a, b]→ L(2n)
with the diagonal subspace 4 = {(x, x) : x ∈ R2n} ⊂ R4n. The Maslov index of the pair is
then defined by

Mas(Λ1,Λ2; [a, b]) := Mas(Λ1 ⊕ Λ2,4; [a, b]). (3.26)

The right hand side of (3.26) is computed with Definition 3.3, using the symplectic form
(3.6); doing so leads to the following definitions, as in [PT08, Exercise 5.18]. A mapping
(w1, w2) : [t0 − ε, t0 + ε]→ R2n ×R2n, ε > 0, will be called a root function pair for (Λ1,Λ2)
at t = t0 if w1(t) ∈ Λ1(t), w2(t) ∈ Λ2(t) ∈ Λ2(t) and w1(t0) = w2(t0). The order of (w1, w2),

ord(w1, w2) is the smallest positive integer k such that w
(k)
1 (t0) 6= w

(k)
2 (t0). We then define

Wk(Λ1,Λ2, t0) := {w0 : ∃ a root function pair (w1, w2) for (Λ1,Λ2)

with ord(w1, w2) ≥ k and w1(t0) = w2(t0) = w0},
(3.27)

and when the choice of t0 is clear we simply write Wk(Λ1,Λ2). As in (3.3), we have
Wk+1(Λ1,Λ2, t0) ⊆ Wk(Λ1,Λ2, t0) for k ≥ 1 and W1 = Λ1(t0) ∩ Λ2(t0). The kth-order
relative crossing form is then the quadratic form

m
(k)
t0

(Λ1,Λ2)(w0) :=
dk

dtk
ω
(
w1(t), w0

)∣∣∣
t=t0
− dk

dtk
ω
(
w2(t), w0

)∣∣∣
t=t0

,

= ω
(
w

(k)
1 (t0)− w(k)

2 (t0), w0

)
,

(3.28)

for w0 ∈ Wk (Λ1,Λ2), where (w1, w2) is any root function pair for (Λ1,Λ2) at t0 with

ord(w1, w2) ≥ k. Analogous to (3.5), we have Wk(Λ1,Λ2) = kerm
(k−1)
t0

(Λ1,Λ2). Using
(3.28) in Definition 3.3 thus computes the Maslov index of the pair (Λ1,Λ2); in the case
that Λ2 = V is constant, the computation reduces to the Maslov index of the path Λ1 with
respect to the reference plane V described in Section 3.1.

The Maslov index is invariant for Lagrangian pairs that are stratum homotopic; we give a
proof of this fact below. The corresponding result for single paths can be found in [RS93,

Theorem 2.4]. Suppose the pairs (Λ1,Λ2) : [a, b] → L(n) and (Λ̃1, Λ̃2) : [a, b] → L(n) are
stratum homotopic, i.e. there exist continuous mappings H1, H2 : [0, 1]× [a, b]→ L(n) such
that

H1(0, ·) = Λ1(·), H2(0, ·) = Λ2(·)

H1(1, ·) = Λ̃1(·), H2(1, ·) = Λ̃2(·),

for which dim(H1(s, a) ∩ H2(s, a)) and dim(H1(s, b) ∩ H2(s, b)) are constant in s ∈ [0, 1].
We then have the following.
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Lemma 3.6.

Mas(Λ1,Λ2; [a, b]) = Mas(Λ̃1, Λ̃2; [a, b]). (3.29)

Proof. Consider the continuous mapping H = H1 ⊕H2 : [0, 1] × [a, b] → L(n) × L(n). By
continuity of H and homotopy invariance (i.e. property (3) of Proposition 3.4), we have

Mas(H(0, ·),4; [a, b]) + Mas(H(·, b),4; [0, 1])

−Mas(H(1, ·),4; [a, b])−Mas(H(·, a),4; [0, 1]) = 0. (3.30)

Using (3.26) we have

Mas(H(0, ·),4; [a, b]) = Mas(Λ1,Λ2; [a, b]), Mas(H(1, ·),4; [a, b]) = Mas(Λ̃1, Λ̃2; [a, b]).

By assumption dim (H(·, a) ∩4) = dim (H1(·, a) ∩H2(·, a)) and dim (H(·, b) ∩4) =
dim (H1(·, b) ∩H2(·, b)) are constant, so by property (4) of Proposition 3.4 the Maslov
indices of the second and fourth terms in (3.30) are zero. Equation (3.29) follows. �

3.3. The Maslov box. We first discuss the regularity and Lagrangian property of the
stable and unstable bundles. Recall Es(x, λ) and Eu(x, λ) defined in (2.12) for x ∈ R and
λ ∈ R. We extend Es and Eu to x = ±∞ by setting

Es(+∞, λ) := S(λ), Eu(−∞, λ) := U(λ), (3.31)

and

Es(−∞, λ) := lim
x→−∞

Es(x, λ), Eu(+∞, λ) := lim
x→+∞

Eu(x, λ). (3.32)

Thus by (2.13), Es and Eu are continuous on (−∞,∞]×R and [−∞,∞)×R respectively.
Furthermore, since the right hand side of (2.2) is analytic in λ and x, it follows that the
solution spaces Es and Eu are analytic on (x, λ) ∈ R× R (note that x = ±∞ is excluded).
We remark here that the mapping

λ 7→ Eu(+∞, λ) = lim
x→∞

Eu(x;λ) (3.33)

is discontinuous at eigenvalues λ ∈ Spec(N). Indeed, if λ /∈ Spec(N), then Eu(+∞, λ) =
U(λ) (again as points on the Grassmannian Gr4(R8)), while if λ ∈ Spec(N) is an eigenvalue
then Eu(+∞, λ) ∩ S(λ) 6= {0}, i.e. Eu(+∞, λ) ∈ T (S(λ)). Now since U(λ) ∈ T0(S(λ)), and
T0(S(λ)) is an open subset of L(n) with boundary T (S(λ)), it follows that U(λ) is bounded
away from T (S(λ)). For more details see the Appendix in [HLS18].

Remark 3.7. The Maslov index is defined for Lagrangian paths over compact intervals.
Following [HLS18] we will sometimes compactify R via the change of variables

x = ln

(
1 + τ

1− τ

)
, τ ∈ [−1, 1]. (3.34)

(Similar transformations are used in [BCJ+18, AGJ90].) Notationally we will use a hat to
indicate such a change has been made, for example,

Ês,u(τ, ·) := Es,u
(

ln

(
1 + τ

1− τ

)
, ·
)
, τ ∈ [−1, 1]. (3.35)

In this case, (3.31) implies that Êu(−1, λ) = U(λ) and Ês(1, λ) = S(λ).

Lemma 3.8. The spaces Eu(x;λ) and Es(x;λ) are Lagrangian subspaces of R8 for all
x ∈ [−∞,∞] and λ ∈ R.
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Proof. First, recall that dimU(λ) = dimS(λ) = 4 (we showed in (3.31) that A∞(λ) is
hyperbolic with four eigenvalues of positive real part and four of negative real part.) It
follows from the continuity of Eu on [−∞,∞) × R that dimEu(x, λ) = 4 for all (x, λ) ∈
[−∞,∞)× R. A similar argument shows dimEs(x, λ) = 4 for (x, λ) ∈ (−∞,∞]× R.

Next, for x ∈ R, let w1(x;λ),w2(x;λ) ∈ Eu(x;λ). We have:

ω(w1(x;λ),w2(x;λ)) = 〈Jw1(x;λ),w2(x;λ)〉,

=

∫ x

−∞

d

ds
〈Jw1(s;λ),w2(s;λ)〉ds,

=

∫ x

−∞
〈JA(s;λ)w1(s;λ),w2(s;λ)〉+ 〈Jw1(s;λ), A(s;λ)w2(s;λ)〉ds,

=

∫ x

−∞

〈(
A(s;λ)>J + JA(s;λ)

)
w1(s;λ),w2(s;λ)

〉
ds,

= 0,

where we used (2.14), i.e. that A(x;λ) is infinitesimally symplectic. The proof for Es(x;λ) is
similar, but the integral is taken over [x,∞). We have shown that Eu and Es are Lagrangian
on R × R. That this property extends to x = ±∞ follows the closedness of L(n) as a
submanifold of Grn(R2n). �

We are now ready to give the homotopy argument that leads to the lower bound of Theo-
rem 1.2. We consider the Lagrangian pair

Γ 3 (x, λ) 7→ (Eu(x, λ),Es(`, λ)) ∈ L(4)× L(4), (3.36)

where `� 1 needs to be chosen large enough so that

U(λ) ∩ Es(x, λ) = {0} for all x ≥ ` (3.37)

(see Remark 3.9). Here Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, where the Γi are the contours

Γ1 : x ∈ [−∞, `], λ = 0, Γ3 : x ∈ [−∞, `], λ = λ∞,

Γ2 : x = `, λ ∈ [0, λ∞], Γ4 : x = −∞, λ = λ ∈ [0, λ∞],
(3.38)

in the λx-plane (see Fig. 1). The set Γ has been dubbed the Maslov box [HLS18, Cor19],
and the associated homotopy argument (outlined below) can be seen in as far back as the
works of Bott [Bot56], Edwards [Edw64], Arnol’d [Arn67] and Duistermaat [Dui76]. Notice
that along Γ1 and Γ3, the second entry Es(`, λ) of the image of the map in (3.36) is fixed.
The Maslov index of (3.36) along these pieces thus reduces to the Maslov index for a single
path with respect to a fixed reference plane. Along Γ2 and Γ4, however, we have a genuine
Lagrangian pair.

Crossings of (3.36) are points (x, λ) ∈ Γ such that

Eu(x, λ) ∩ Es(`, λ) 6= {0}.

Recalling that λ is an eigenvalue of N if and only if Eu(x, λ) ∩ Es(x, λ) 6= {0} for all
x ∈ R, it follows that the λ-values of the crossings along Γ2 (where x = `) are exactly the
eigenvalues of N . In particular, since 0 ∈ Spec(N) there will be a crossing at (x, λ) = (0, `).
From Hypothesis 1.1 we have ker(L−) = span{φ} and ker(L+) = span{φ′}. Denoting the
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corresponding solutions of (2.2) by

φφφ(x) :=



0
φ′′(x) + σ2φ(x)

0
−φ(x)

0
−φ′(x)

0
φ′′′(x)


, ϕϕϕ(x) :=



φ′′′(x) + σ2φ
′(x)

0
φ′(x)

0
φ′′(x)

0
φ′′′′(x)

0


, (3.39)

(obtained from (2.1) with v = φ and u = φ′ respectively), we therefore have

Eu(x; 0) ∩ Es(x; 0) = span{φφφ(x),ϕϕϕ(x)} for all x ∈ R. (3.40)

Remark 3.9. That the path (3.33) is discontinuous in λ prohibits taking Γ2 to be at
x = +∞. Taking Γ2 to be at x = ` for ` large enough avoids this issue. Chen and
Hu [CH07] showed that by taking ` large enough so that (3.37) holds, the Maslov index of
(3.36) along Γ1 is independent of the choice of `. For more details, see [CH07,Cor19].

Crossings along Γ1, i.e. points (x, λ) = (x0, 0) such that

Eu(x0, 0) ∩ Es(`, 0) 6= {0}, (3.41)

are called conjugate points. Recall that when λ = 0 the eigenvalue equations (1.14) decouple
to give L+u = 0 and L−v = 0. Similarly, the first order system (2.2) decouples into two
independent systems for the u and v variables. In Section 4 the eigenvalue problems for the
operators L+ and L− will be written as first order systems; the stable and unstable bundles
for the L+ system will be denoted by Es+(x, λ) and Eu+(x, λ), respectively, while the stable
and unstable bundles for the L− system will be denoted by Es,u− (x, λ). As a result of the
decoupling at λ = 0 we have

Eu(x, 0) = Eu+(x, 0)⊕ Eu−(x, 0) and Es(x, 0) = Es+(x, 0)⊕ Es−(x, 0) (3.42)

for all x ∈ R, so that

{x ∈ R : Eu(x, 0) ∩ Es(`, 0) 6= {0}} =

{x ∈ R : Eu+(x, 0) ∩ Es+(`, 0) 6= {0}} ∪ {x ∈ R : Eu−(x, 0) ∩ Es−(`, 0) 6= {0}}. (3.43)

(The precise notion of the direct sums in (3.42) will be given in Section 5.) When dealing
with conjugate points, we will see that it suffices to use the stable subspace S(0) (instead
of Es(`, 0)) as the reference plane to do computations. That S(0) = S+(0) ⊕ S−(0), where
S±(0) is the stable subspace of the asymptotic first order system for the eigenvalue problem
for L±, leads to the following classification of conjugate points.

Definition 3.10. An L+ conjugate point is a point (x, λ) = (x0, 0) such that Eu+(x0, 0) ∩
S+(0) 6= {0}. An L− conjugate point is similarly defined via Eu−(x0, 0) ∩ S−(0) 6= {0}.

Since the solid rectangle M = [−∞, `] × [0, λ∞] is contractible and the map (3.36) with
domain M is continuous, the image of the boundary ∂M = Γ of M in L(4) × L(4) is
homotopic to a fixed point. From homotopy invariance (Proposition 3.4), it follows that

Mas(Eu(·, ·),Es(·, ·); Γ) = 0. (3.44)

By additivity under concatenation, we can decompose the left hand side into the contribu-
tions coming from the constituent sides of the Maslov box, i.e.

Mas(Eu(·, 0),Es(`, 0); [−∞, `]) + Mas(Eu(`, ·),Es(`, ·); [0, λ∞])

−Mas(Eu(·, λ∞),Es(`, λ∞); [−∞, `])−Mas(Eu(−∞, ·),Es(`, ·); [0, λ∞]) = 0. (3.45)
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Figure 1. Maslov box in the λx-plane, with edges oriented in a clockwise fashion. The
crossing at the top left corner (0, `) corresponds to the zero eigenvalue of N . Noting that
λ ∈ R is a spectral parameter, and therefore lives on the real axis in C, it is natural to
place λ on the horizontal axis.

Note we have included minus signs for the last two terms in order to be consistent with the
clockwise orientation of the Maslov box (see Fig. 1). We will show in Section 5 that in fact
these last two Maslov indices are zero. Defining

c := Mas(Eu(·, 0),Es(`, 0); [`− ε, `]) + Mas(Eu(`, ·),Es(`, ·); [0, ε]), 0 < ε� 1, (3.46)

to be the contribution to the Maslov index of the crossing (x, λ) = (`, 0) at the top left
corner of the Maslov box, it follows once more from additivity under concatenation that

Mas(Eu(·, 0),Es(`, 0); [−∞, `− ε]) + c + Mas(Eu(`, ·),Es(`, ·); [ε, λ∞]) = 0. (3.47)

We will compute the first term of (3.47) by counting L+ and L− conjugate points. By
bounding n+(N) from below by the absolute value of the third term in (3.47), computing c
and rearranging, we will arrive at the statement of Theorem 1.2. Before doing so, we turn
to the computation of the Morse indices of L+ and L− via the Maslov index.

4. Spectral counts for L+ and L− via conjugate points

In this section we focus on the spectral problems for the fourth-order selfadjoint operators
L+ and L−. Specifically, we prove that the Morse index of each operator is equal to the
respective number of conjugate points on R. Similar results for certain classes of selfadjoint
fourth order operators may be found in [How21,How23].

Theorem 4.1. The number of positive eigenvalues of L+ is equal to the number of L+-
conjugate points, counted with multiplicity, on R:

P =
∑
x∈R

dim
(
Eu+(x, 0) ∩ S+(0)

)
. (4.1)

A similar assertion holds for L−.

We will prove the proposition using a homotopy argument involving the Maslov box, similar
to that described in Section 3.3. We will focus primarily on the spectral count for L+; the
spectral count for L− follows similarly with minor adjustments. In order to set the argument
up, we introduce the first order systems for the L+ and L− eigenvalue problems and their
associated stable and unstable bundles. In what follows, we use a subscript + or − to
indicate that objects pertain to the eigenvalue problem for L+ or L−.
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The eigenvalue equation for L+,

− u′′′′ − σ2u′′ − βu+ 3φ2u = λu, u ∈ H4(R), (4.2)

can be reduced to the following first order system via the u substitutions in (2.1),
u1
u2
u3
u4


′

=


0 0 σ2 1
0 0 1 0
1 −σ2 0 0
−σ2 α(x)− λ 0 0



u1
u2
u3
u4

 , (4.3)

where α(x) = 3φ(x)2 − β + 1. Similar to (2.2), we write this system as

ux = A+(x, λ)u, (4.4)

where u = (u1, u2, u3, u4)
> and

A+(x, λ) =

(
0 B+

C+(x, λ) 0

)
, B+ =

(
σ2 1
1 0

)
, C+(x, λ) =

(
1 −σ2
−σ2 α(x)− λ

)
.

Likewise, the eigenvalue equation for L−,

− v′′′′ − σ2v′′ − βv + φ2v = λv, v ∈ H4(R), (4.5)

can be reduced to the following first order system via the v substitutions in (2.1),
v1
v2
v3
v4


′

=


0 0 −σ2 1
0 0 1 0
−1 −σ2 0 0
−σ2 η(x) + λ 0 0



v1
v2
v3
v4

 . (4.6)

where η(x) = −φ(x)2 + β − 1. We write this as

vx = A−(x, λ)v, (4.7)

where v = (v1, v2, v3, v4)
> and

A−(x, λ) =

(
0 B−

C−(x, λ) 0

)
, B− =

(
−σ2 1

1 0

)
, C−(x, λ) =

(
−1 −σ2
−σ2 η(x) + λ

)
.

The coefficient matrices A±(x, λ) are infinitesimally symplectic, satisfying equation (2.14).
In order to be consistent with (2.2) at λ = 0, we have used the same substitutions (2.1)
to reduce (4.2) and (4.5) to (4.3) and (4.6) respectively. Consequently, λ appears with
a different sign in (4.3) and (4.6), due to the substitutions for u2 and u3 in (2.1) having
different signs to those for v2 and v3 in the same equation. This will be the reason for the
difference in sign of the Maslov indices in Lemma 4.2.

Under the assumptions (1.10),(1.11), for all λ lying outside of the essential spectrum in
(2.10), the asymptotic matrices

A+(λ) := lim
x→±∞

A+(x, λ), A−(λ) := lim
x→±∞

A−(x, λ),

each have two eigenvalues with negative real part and two with positive real part. We denote
the associated stable and unstable subspaces by S±(λ) and U±(λ) respectively. Reasoning
as in Section 3.3, associated with each of the systems (4.3) and (4.6) are the stable and
unstable bundles,

Eu+(x, λ) := {ξ ∈ R4 : ξ = u(x;λ), u solves (4.3) and u(x;λ)→ 0 as x→ −∞},
Es+(x, λ) := {ξ ∈ R4 : ξ = u(x;λ), u solves (4.3) and u(x;λ)→ 0 as x→ +∞},
Eu−(x, λ) := {ξ ∈ R4 : ξ = v(x;λ), v solves (4.6) and v(x;λ)→ 0 as x→ −∞},
Es−(x, λ) := {ξ ∈ R4 : ξ = v(x;λ), v solves (4.6) and v(x;λ)→ 0 as x→ +∞}.

(4.8)
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When considered as points on the Grassmannian Gr2(R4), these bundles converge to the
asymptotic stable and unstable subspaces as follows,

lim
x→−∞

Eu+(x, λ) = U+(λ), lim
x→+∞

Es+(x, λ) = S+(λ),

lim
x→−∞

Eu−(x, λ) = U−(λ), lim
x→+∞

Es−(x, λ) = S−(λ).

That Eu+(x, λ),Eu−(x, λ),Es+(x, λ),Es−(x, λ) are Lagrangian subspaces of R4, with the map-
pings (x, λ) 7→ Eu±(x, λ) being continuous on [−∞,∞)×R and (x, λ) 7→ Eu,s± (x, λ) analytic
on R× R, follows from the same arguments as in Section 3.3. We omit the proofs.

Let us now consider the path

Γ 3 (x, λ) 7→ (Eu+(x, λ),Es+(`, λ)) ∈ L(2)× L(2), (4.9)

where Γ is given in (3.38) (see Fig. 1). Crossings of (4.9) along Γ2 now represent eigenvalues
of L+. Homotopy invariance and additivity under concatenation implies that

Mas(Eu+(·, 0),Es+(`, 0); [−∞, `]) + Mas(Eu+(`, ·),Es+(`, ·); [0, λ∞])

−Mas(Eu+(·, λ∞),Es+(`, λ∞); [−∞, `])−Mas(Eu+(−∞, ·),Es+(`, ·); [0, λ∞]) = 0. (4.10)

To prove Theorem 4.1, we will show that the last two terms in the right hand side of (4.10)
are zero, and that every crossing along Γ2 is positive. We also show that along Γ1, we can
interchange the reference plane Es+(`, 0) with S+(0) over a modified interval, i.e.

Mas(Eu+(·, 0),Es+(`, 0); [−∞, `]) = Mas(Eu+(·, 0), S+(0); [−∞,∞]), (4.11)

and that all crossings of the latter path are negative. By showing that the corner crossing
(x, λ) = (`, 0) has two contributions (the arrival along Γ1 and departure along Γ2) to the
Maslov index of the path (4.9) that cancel each other out, Theorem 4.1 will then follow.
The proof for the L− problem will be similar.

4.1. Computing the Maslov index along Γ1. In order to compute the right hand side
of (4.11), we will need a real frame for S±(0) with which we can compute crossing forms. To
that end, note that the asymptotic matrices A±(0) satisfy Spec(A+(0)) = Spec(A−(0)) =
{±µ1,±µ2}, where

µ1 =

√
−σ2 −

√
1− 4β√

2
, µ2 =

√
−σ2 +

√
1− 4β√

2
. (4.12)

Under assumptions (1.10), (1.11), we have µ2 = µ̄1 ∈ C\R whenever β > 1/4 (for both
σ2 = ±1), and µ1, µ2 ∈ R when σ2 = −1 and 0 < β < 1/4. The eigenvectors corresponding
to −µ1 and −µ2 are given by

p1 =


µ22
−1
µ1
µ31

 , p2 =


µ21
−1
µ2
µ32

 , and m1 =


µ22
1
−µ1
µ31

 , m2 =


µ21
1
−µ2
µ32

 , (4.13)

so that

ker (A+(0) + µi) = span{pi}, ker (A−(0) + µi) = span{mi}, i = 1, 2. (4.14)

Notice that the vectors pi,mi for i = 1, 2 are complex-valued if β > 1/4. We collect these
vectors into the columns of two frames, which we denote with 2× 2 blocks Pi,Mi, i = 1, 2,
via (

P1

P2

)
:=


µ22 µ21
−1 −1
µ1 µ2
µ31 µ32

 ,

(
M1

M2

)
:=


µ22 µ21
1 1
−µ1 −µ2
µ31 µ32

 . (4.15)
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All of the matrices Pi,Mi are invertible under (1.10) and (1.11). Right multiplying each
frame in (4.15) by the inverse of its upper 2 × 2 block yields the following real frame for
S±(0),

S± =

(
I
S±

)
, S± =

1√
2
√
β − σ2

(
∓1 σ2 −

√
β

σ2 −
√
β ±(

√
βσ2 + β − 1)

)
, (4.16)

where S+ = P2P
−1
1 and S− = M2M

−1
1 .

An important relation exists between S± and the blocks of the asymptotic matrix A±(0)
that will be needed in our analysis. Define C±(x) := C±(x, 0). Focusing on the L+ problem,
because the columns of the frame (P1, P2) are eigenvectors of A+(0), we have(

0 B+

Ĉ+ 0

)(
P1

P2

)
=

(
P1

P2

)
D, D = diag{−µ1,−µ2}, (4.17)

where

Ĉ+ = lim
x→±∞

C+(x) =

(
±1 −σ2
−σ2 ∓(β − 1)

)
. (4.18)

That is, B+P2 = P1D and Ĉ+P1 = P2D. It follows that

Ĉ+ = P2D+P
−1
1 =

(
P2P

−1
1

) (
P1D+P

−1
2

) (
P2P

−1
1

)
= S+B+S+. (4.19)

It can be similarly shown that

Ĉ− = S−B−S−, (4.20)

where Ĉ− := limx→±∞C−(x).

We are ready to state our first intermediate result towards the proof of Theorem 4.1: mono-
tonicity of the paths x 7→ (Eu±(x, 0),S±(0)). In what follows, 〈·, ·〉 denotes the Euclidean
dot product.

Lemma 4.2. Each crossing x0 ∈ R of the Lagrangian path x 7→ (Eu+(x, 0),S+(0)) is nega-
tive. Thus

Mas(Eu+(·, 0),S+(0); [−∞,∞)) = −
∑
x∈R

dim
(
Eu+(x, 0) ∩ S+(0)

)
. (4.21)

Similarly, each crossing x = x0 ∈ R of x 7→
(
Eu−(x, 0), S−(0)

)
is positive, and we have

Mas(Eu−(·, 0),S−(0); [−∞,∞)) =
∑
x∈R

dim
(
Eu−(x, 0) ∩ S−(0)

)
. (4.22)

Remark 4.3. In the above lemma (and throughout), by having the domain of the La-
grangian paths x 7→ (Eu±(·, 0), S±(0)) as x ∈ [−∞,∞), we mean that τ ∈ [−1, 1− ε] for the

compactified path τ 7→ Êu+(τ, 0) for some small ε > 0 (see Remark 3.7). We emphasise that
the final point of the path, τ = +1 (x = ∞), which is always a conjugate point because
Eu±(+∞, 0) ∈ T1(S±(0)) on account of Hypothesis 1.1, is excluded.

Proof. We begin with the L+ problem. Denote a frame for the unstable bundle Eu+(x, 0) by

U(x) =

(
X(x)
Y (x)

)
, X(x), Y (x) ∈ R2×2. (4.23)

In what follows, x = x0 ∈ R is a conjugate point, i.e. Eu+(x0, 0) ∩ S+(0) 6= {0}, and we will
denote

U0 := U(x0), X0 := X(x0), Y0 := Y (x0).

We momentarily assume the following.

Hypothesis 4.4. At every crossing x0 ∈ R, φ(x0) 6= 0.
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We begin by computing the first order crossing form, i.e. (3.6) with x as the independent
variable and k = 1. To that end, recall from (3.3) that

W1 = Eu+(x, 0) ∩ S+(0).

Any w0 ∈W1 can therefore be written

w0 = U0h0 =

(
X0

Y0

)
h0 =

(
I
S+

)
k0 ∈ Eu+(x, 0) ∩ S+(0), (4.24)

for some h0, k0 ∈ R2. To compute the first order form, as in (3.13), we need to write down
U′(x0); since the columns of U(x) satisfy (4.3), we have

X ′(x) = B+Y (x), Y ′(x) = C+(x)X(x), (4.25)

(recall that C+(x) := C+(x, 0)). Now let us define

C̃+(x) := C+(x)− Ĉ+ =

(
0 0
0 3φ(x)2

)
, (4.26)

and recalling Ĉ+ from (4.18) and using (4.19), we observe that

C+(x)− S+B+S+ =
(
Ĉ+ + C̃+(x)

)
− S+B+S+ = C̃+(x). (4.27)

Letting k0 = (a0, b0)
>, and using (4.24), (4.25) and (4.27), we compute (3.13):

mx0(Eu+(·, 0), S+(0))(w0) = ω
(
U′(x0)h0, w0

)
=

〈(
−Y ′(x0)
X ′(x0)

)
h0,

(
I
S+

)
k0

〉
,

= −
〈(
Y ′(x0)− S+X ′(x0)

)
h0, k0

〉
,

= −〈(C+(x0)− S+B+S+) k0, k0〉 ,

= −C̃+(x0)k0 = −3φ(x0)
2b20. (4.28)

Under Hypothesis 4.4, we conclude that if there exist root functions w such that w0 = S+k0
where k0 = (a0, b0)

>, b0 6= 0, then n−(mx0) = 1. If, however, there exist root functions
w such that b0 = 0, then the form mx0 is degenerate, and we need to compute higher
order crossing forms. We split the analysis into two cases; in what follows, we suppress
x-dependence of C+ to simplify the notation.

Case 1: dimEu+(x0, 0) ∩ S+(0) = 1.

Let s1, s2 denote the first and second columns of the frame S+ given in (4.16). If for some
fixed a0 and b0 6= 0 we have

W1 = Eu+(x0, 0) ∩ S+(0) = span{a0s1 + b0s2}, (4.29)

then from (4.28) we see that n−(mx0) = 1 = dimEu+(x0, 0) ∩ S+(0), and the crossing x0 is
negative. On the other hand, if

W1 = Eu+(x0, 0) ∩ S+(0) = span{s1}, (4.30)

so that b0 = 0, then mx0 = 0, and we need to compute higher order crossing forms. For the
rest of Case 1, we assume (4.30), so that the vector k0 in (4.24) is given by k0 = (a0, 0)>

(where a0 6= 0 for a nontrivial intersection.)

Since the crossing form is zero on this (one-dimensional) crossing, we know from (3.5) that

W2 = kermx0 = W1 = span{s1}. (4.31)

According to Lemma 3.2, assuming h0 satisfies (4.24) with b0 = 0, i.e.

U0h0 =

(
X0

Y0

)
h0 =

(
I
S+

)
k0, k0 =

(
a0
0

)
, (4.32)
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we now need to find a vector h1 ∈ R2 such that

U′(x0)h0 + U0h1 =

(
X ′(x0)
Y ′(x0)

)
h0 +

(
X0

Y0

)
h1 ∈ S+(0). (4.33)

Since (I, S+) is a frame for S+(0), this just means

Y ′(x0)h0 + Y0h1 = S+
(
X ′(x0)h0 +X0h1

)
. (4.34)

Thus, using (4.32), (4.25), and that

C+k0 = S+B+S+k0, (4.35)

(see (4.26), (4.27)), it follows from (4.34) that

(Y0 − S+X0)h1 = −
(
Y ′(x0)h0 − S+X ′(x0)

)
h0 = −(C+ − S+B+S+)k0 = 0. (4.36)

In order to write down h1, we first note from (4.32) that

(Y0 − S+X0)h0 = 0. (4.37)

Next, we observe that Eu+(x0, 0)∩ S+(0) ∼= ker (Y0 − S+X0), where the bijective correspon-
dence is given by h0 ↔ U0h0. To see this, note that any U0h0 ∈ Eu+(x0, 0) is also in S+(0)
if and only if Y0h0 = S+X0h0, i.e. h0 ∈ ker(Y0 − S+X0). Under our assumption (4.30), it
follows that dim ker (Y0 − S+X0) = 1. Hence, (4.36) and (4.37) imply that

h1 = αh0, α ∈ R. (4.38)

We are ready to compute the second order form using Lemma 3.2. With W2 given by (4.31)
and h0, h1 given by (4.32) and (4.38), we compute:

m(2)
x0 (Eu+(·, 0),S+(0))(w0) = ω(U′′(x0)h0 + 2U′(x0)h1, w0),

=

〈(
−Y ′′(x0)
X ′′(x0)

)
h0,

(
I
S+

)
k0

〉
+ 2

〈(
−Y ′(x0)
X ′(x0)

)
h1,

(
I
S+

)
k0

〉
,

= −
〈(
Y ′′(x0)− S+X ′′(x0)

)
h0, k0

〉
− 2

〈(
Y ′(x0)− S+X ′(x0)

)
h1, k0

〉
. (4.39)

Differentiating (4.25) yields

X ′′(x) = B+C+X(x), Y ′′(x) = C ′+X(x) + C+B+Y (x). (4.40)

Using (4.32), it follows that

X ′′(x0)h0 = B+C+k0, Y ′′(x0)h0 = C ′+k0 + C+B+S+k0 = C+B+S+k0, (4.41)

where we used that

C ′+k0 = C̃ ′+k0 =

(
0 0
0 6φ(x)φ′(x)

)(
a0
0

)
= 0. (4.42)

Using (4.41), the symmetry of C+ and S+B+S+ and (4.35), the first term of (4.39) becomes

−
〈(
Y ′′(x0)− S+X ′′(x0)

)
h0, k0

〉
= −〈C+B+S+k0, k0〉+ 〈S+B+C+k0, k0〉 ,
= −〈S+B+S+B+S+k0, k0〉+ 〈S+B+S+B+S+k0, k0〉 = 0.

For the second term of (4.39), using (4.25), the symmetry of C+ and S+B+S+, (4.35) and
(4.36), we obtain

−2
〈(
Y ′(x0)− S+X ′(x0)

)
h1, k0

〉
= −2 〈C+X0h1, k0〉+ 2 〈S+B+Y0h1, k0〉 ,
= 2 〈S+B+ (Y0 − S+X0)h1, k0〉 = 0.

Hence both terms in (4.39), are zero, that is,

m(2)
x0 (Eu+(·, 0), S+(0)) = 0,

and we need to compute the third order crossing form.
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The last calculation shows that W3 = kerm
(2)
x0 = W2 = W1. As per Lemma 3.2, assuming

h0 and h1 are given by (4.32) and (4.38), we need to find a vector h2 ∈ R2 such that
U′′(x0)h0 + 2U′(x0)h1 + U(x0)h2 ∈ S+(0), that is,

Y ′′(x0)h0 + 2Y ′(x0)h1 + Y0h2 = S+

(
X ′′(x0)h0 + 2X ′(x0)h1 +X0h2

)
. (4.43)

Rearranging, this becomes

(Y0 − S+X0)h2 = −
(
Y ′′(x0)− S+X ′′(x0)

)
h0 − 2

(
Y ′(x0)− S+X ′(x0)

)
h1. (4.44)

Using (4.41), (4.25), (4.32) and (4.35) in the previous equation yields

(Y0 − S+X0)h2 = −(C+ − S+B+S+)B+S+k0 + 2(S+B+Y0 − C+X0)h1. (4.45)

With w0 ∈ W3 = W2 = W1, and h0, h1 and h2 given by (4.32), (4.38) and (4.45), we are
ready to compute the third order form. Using Lemma 3.2, similar to (4.39) we arrive at

m(3)
x0 (Eu+(·, 0),S+(0))(w0) = ω(U′′′(x0)h0 + 3U′′(x0)h1 + 3U′(x0)h2, w0),

= −
〈
Y ′′′(x0)− S+X ′′′(x0)h0, k0

〉
− 3

〈(
Y ′′(x0)− S+X ′′(x0)

)
h1, k0

〉
− 3

〈(
Y ′(x0)− S+X ′(x0)

)
h2, k0

〉
.

(4.46)

Differentiating (4.40) yields

X ′′′(x) = B+C
′
+X(x) +B+C+B+Y (x),

Y ′′′(x) = C ′′+X(x) + 2C ′+B+Y (x) + C+B+C+X(x).
(4.47)

For the first term of (4.46), using (4.47) at x0, (4.32) and (4.35), as well as that C ′′+k0 =
C ′+k0 = 0, we have

−
〈
Y ′′′(x0)− S+X ′′′(x0)h0, k0

〉
= −

〈
C ′′+k0 + 2C ′+B+S+k0 + C+B+C+k0, k0

〉
+ 〈S+B+C+B+S+k0, k0〉 ,

= 〈S+B+ (C+ − S+B+S+)B+S+k0, k0〉 . (4.48)

For the second term of (4.46), combining (4.40) at x0, (4.35) and C ′+k0 = 0, we find that

−3
〈(
Y ′′(x0)− S+X ′′(x0)

)
h1, k0

〉
= −3 〈C+B+Y0h1, k0〉+ 3 〈S+B+C+X0h1, k0〉 ,
= 3
〈
S+B+ (C+X0 − S+B+Y0)h1, k0

〉
,

= 3
〈
S+B+ (C+ − S+B+S+)X0h1, k0

〉
+ 3
〈
S+B+S+B+ (S+X0 − Y0)h1, k0

〉
,

= 0.

(4.49)

In the last line we used that h1 ∈ ker (Y0 − S+X0), as well as that h1 = αh0 for some α ∈ R
and hence X0h1 = αX0h0 = αk0, so that

(C+ − S+B+S+)X0h1 = α (C+ − S+B+S+) k0 = 0. (4.50)

For the last term of (4.46), using (4.25) and (4.45), we find that

−3
〈(
Y ′(x0)− S+X ′(x0)

)
h2, k0

〉
= −3 〈C+X0h2, k0〉+ 3 〈S+B+Y0h2, k0〉 ,
= 3 〈S+B+ (Y0 − S+X0)h2, k0〉 ,
= −3 〈S+B+ (C+ − S+B+S+)B+S+k0, k0〉
− 6〈S+B+ (C+X0 − S+B+Y0)h1, k0〉.

(4.51)

The second term of the last line is minus two times the quantity in (4.49), and is therefore
zero. Combining the first term with (4.48), we arrive at

m(3)
x0 (Eu+(·, 0),S+(0))(w0) = −2 〈S+B+ (C+ − S+B+S+)B+S+k0, k0〉 = −6a20φ(x0)

2

2
√
β − σ2

.



FOURTH-ORDER NLS AND THE MASLOV INDEX 27

It follows from our assumptions (1.10), (1.11) that 2
√
β − σ2 > 0. Hence, under Hypothe-

sis 4.4, we have n−(m
(3)
x0 ) = 1 = dimEu+(x0, 0) ∩ S+(0), and the crossing is negative.

Case 2: dimEu+(x0, 0) ∩ S+(0) = 2.

In this case, W1 = Eu+(x, 0) = S+(0), and hence U0 and S+ are frames for the same
Lagrangian plane. Therefore U0 = S+M for some 2 × 2 invertible matrix M , so that
X0 = M and

Y0 = S+X0. (4.52)

Evaluating the first order form on W1 = Eu+(x, 0) = S+(0), we already saw that n−(mx0) =
1. Since kermx0 6= {0}, we again compute higher order crossing forms; the proof is similar
to Case 1 with the following changes. For the second order crossing form, we have

W2 = kermx0 = span{s1}. (4.53)

Since Y0 = S+X0, equation (4.36) indicates that any h1 ∈ R2 will satisfy (4.33). With h1
free and h0 given by (4.32), the computation of the second order crossing form is unchanged,
owing to (4.52). For the third order crossing form, we’ll have W3 = W2, while using (4.52)
in (4.45) shows that

(S+B+Y0 − C+X0)h1 =
1

2
(C+ − S+B+S+)B+S+k0. (4.54)

We conclude that any h2 ∈ R2 will satisfy (4.43), provided h1 satisfies (4.54). With such
h0, h1, h2, the computation of the third order form is similar; the first term of (4.46) again
gives (4.48), the last term of (4.46) vanishes due to (4.52) (see the second line of (4.51)),
while for the second term of (4.46) we now have, using (4.54),

−3
〈(
Y ′′(x0)− S+X ′′(x0)

)
h1, k0

〉
= 3
〈
S+B+ (C+X0 − S+B+Y0)h1, k0

〉
,

= −3

2

〈
S+B+ (C+ − S+B+S+)B+S+k0, k0

〉
. (4.55)

Adding (4.48) and (4.55) together, we find

m(3)
x0 (Eu+(·, 0),S+(0))(w0) = −1

2
〈S+B+ (C+ − S+B+S+)B+S+k0, k0〉 = − 3φ(x0)

2a20
2(2
√
β − σ2)

.

Arguing as in Case 1, we conclude that n−(m
(3)
x0 ) = 1. Hence, n−(m

(1)
x0 ) + n−(m

(3)
x0 ) = 2 =

dimEu+(x0, 0) ∩ S+(0), and the crossing is negative.

The proof for the L− problem is similar, the main difference being the change in sign of
the crossing forms. In particular, using the same arguments as those above show that the
first order crossing form is given by

mx0(Eu−(·, 0),S−(0))(w0) = −〈(C− − S−B−S−)k0, k0〉 = φ(x0)
2b20,

the second order form m
(2)
x0 (Eu−(·, 0), S−(0))(w0) = 0, while in the case of a one-dimensional

intersection the third order form is given by

m(3)
x0 (Eu−(·, 0), S−(0))(w0) = −2 〈S−B− (C− − S−B−S−)B−S−k0, k0〉 =

2a20φ(x0)
2

2
√
β − σ2

,

and in the two-dimensional case,

m(3)
x0 (Eu−(·, 0), S−(0))(w0) = −1

2
〈S+B+ (C+ − S+B+S+)B+S+k0, k0〉 =

φ(x0)
2a20

2(2
√
β − σ2)

.

We omit the details. Thus, in all cases we have n−(mx0)+n−(m
(3)
x0 ) = dimEu+(x0, 0)∩S+(0),

and the crossings are positive.



28 MITCHELL CURRAN AND ROBERT MARANGELL

If Hypothesis 4.4 fails, i.e. a crossing x0 is such that φ(x0) = 0, then the first order crossing
form is identically zero, and in Cases 1 and 2 described above, the third order form is also
identically zero. Thus, we need to compute higher order crossing forms. The complete
proof of monotonicity in this case is cumbersome, and we leave it to the appendix; see
Appendix A. �

Remark 4.5. Theorem 4.1 will also hold in the case of any power-law fourth-order NLS
equation, i.e. (1.21) for any p ∈ N. In this case, L± are given by

L− = −∂4x − σ2∂2x − β + φ2p, L+ = −∂4x − σ2∂2x − β + (2p+ 1)φ2p,

and the crossing forms m
(k)
x0 for k = 1, 2, 3 will be the same as those in the proof of Theo-

rem 4.1, but scaled by a positive constant, and with φ(x0)
2 replaced by φ(x0)

2p. The signs
are therefore preserved.

Our next task is to show (4.11).

Lemma 4.6. For ` large enough, we have

Mas(Eu+(·, 0),Es+(`, 0); [−∞, `]) = Mas(Eu+(·, 0), S+(0); [−∞,∞]). (4.56)

A similar statement holds for the L− problem.

Proof. We show that the Lagrangian pairs in the left and right hand sides of (4.56) are
stratum homotopic. To do so, it will be convenient to compactify R via the change of
variables in Remark 3.7. Thus, defining

Ês,u± (τ, 0) := Es,u±
(

ln

(
1 + τ

1− τ

)
, 0

)
, (4.57)

(4.56) is equivalent to

Mas(Êu+(·, 0), Ês+(τ`, 0); [−1, τ`]) = Mas(Êu+(·, 0), Ês+(1, 0); [−1, 1]), (4.58)

where ` = ln((1 + τ`)/(1 − τ`)), i.e. τ` = (e` − 1)/(e` + 1), and we used that Ês+(1, 0) =
Es+(+∞, 0) := S+(0) and Rescaling further, we can map [−1, 1] to [−1, τ`] via

g(τ) =

(
1 + τ`

2

)
τ +

(
τ` − 1

2

)
,

where g(−1) = −1 and g(1) = τ`. This allows us to write both Lagrangian paths in (4.58)
over [−1, 1], i.e.

Mas(Êu+(g(·), 0), Ês+(τ`, 0); [−1, 1]) = Mas(Êu+(·, 0), Ês+(1, 0); [−1, 1]). (4.59)

To prove (4.59), we set

Λ1(s, τ) := Êu+(τ + (g(τ)− τ)s, 0), Λ2(s, τ) := Ês+(1 + (τ` − 1)s, 0), (4.60)

noting that Λ2 is independent of τ , and that both mappings (s, τ) 7→ Λ1,2(s, τ) are contin-
uous on [0, 1]× [−1, 1]. In addition,

Λ1(s,−1) = Êu+(−1, 0) = U+(0), Λ2(s,−1) = Ês+(1 + (τ` − 1)s, 0),

where we used that g(−1) = −1. Since U+(0) ∩ Es+(x, 0) = {0} for all x ≥ ` (see (3.37))

and U+(0) ∩ S+(0) = {0}, we have U+(0) ∩ Ês+(τ, 0) = {0} for all τ ∈ [τ`, 1], and hence

Λ1(s,−1) ∩ Λ2(s,−1) = {0}
for all s ∈ [0, 1]. Furthermore,

Λ1(s, 1) = Êu+(1 + (τ` − 1)s, 0), Λ2(s, 1) = Ês+(1 + (τ` − 1)s, 0),
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and therefore
dim Λ1(s, 1) ∩ Λ2(s, 1) = 1

for all s ∈ [0, 1] by Hypothesis 1.1. Equation (4.59) (and thus (4.56)) now follows from
Lemma 3.6. �

Finally, we show that the crossings occurring at the final points of each of the paths in
(4.11) (guaranteed by Hypothesis 4.4) have the same contribution to their respective Maslov
indices. Hence, we can exclude the final point of each path in (4.11). This will complete
the computation of the Maslov index along Γ1, i.e. the first term of (4.10). We note that
some care is needed when dealing with the final crossing of the pair x 7→

(
Eu+(x, 0),S+(0)

)
,

which is obtained in the limit as x→ +∞. Lemma 4.2 therefore does not apply, since the
root functions used in the crossing form calculations either blow up to infinity or decay to
zero asymptotically.

Lemma 4.7. For ε > 0 small enough and ` large enough, we have

Mas(Eu+(·, 0),Es+(`, 0); [−∞, `− ε]) = Mas(Eu+(·, 0),S+(0); [−∞,∞)). (4.61)

A similar statement holds for the L− problem.

Proof. By additivity under concatenation (see Proposition 3.4), we can write (4.59) as

Mas(Êu+(g(·), 0), Ês+(τ`, 0); [−1, 1− ε]) + Mas(Êu+(g(·), 0), Ês+(τ`, 0); [1− ε, 1])

= Mas(Êu+(·, 0), Ês+(1, 0); [−1, 1− ε]) + Mas(Êu+(·, 0), Ês+(1, 0); [1− ε, 1])
(4.62)

for ε > 0 small. Hypothesis 1.1 implies that Êu+(τ, 0) ∈ T1(Ês+(τ, 0)) for τ = τ`, 1, i.e. that
there exists a (one-dimensional) crossing at the final point of each of the paths

τ 7→
(
Êu+(g(τ), 0), Ês+(τ`, 0)

)
, τ 7→

(
Êu+(τ, 0), S+(0)

)
, τ ∈ [−1, 1]. (4.63)

Both of these crossings are isolated. Indeed, undoing the scaling by g one sees that the

first path τ 7→ Êu+(τ, 0) is analytic at τ` < 1. On the other hand, isolation of the final

crossing of the second path in (4.63) follows from analyticity of τ 7→ Êu+(τ, 0) for τ ∈
(−1, 1), monotonicity of τ 7→ Êu+(τ, 0) with respect to T (S+(0)), and the fact that Êu+(τ, 0)
approaches S+(0) as τ → 1− (by assumption). Hence we can choose ε > 0 small enough so
that τ = 1 is the only crossing in the interval [1 − ε, 1] for the paths in (4.63). With this
choice, we now claim that

Mas(Êu+(g(·), 0), Ês+(τ`, 0); [1− ε, 1]) = Mas(Êu+(·, 0), Ês+(1, 0); [1− ε, 1]) = 0, (4.64)

i.e. that the conjugate points occurring at the final points of each of the paths in (4.63) do
not contribute to their respective Maslov indices. Assuming the claim, by (4.62) we have

Mas(Êu+(g(·), 0), Ês+(τ`, 0); [−1, 1− ε]) = Mas(Êu+(·, 0), Ês+(1, 0); [−1, 1− ε]).
Recalling Remark 4.3, this is exactly (4.61) (for a different but still arbitrarily small ε).

It remains to prove (4.64). To that end, note that the paths τ 7→ Êu+(g(τ), 0) and τ 7→
Êu+(τ, 0) are arbitrarily close to one another: for any given δ > 0 small, we can choose
` = ln((2− δ)/δ) so that τ` = 1− δ, in which case

|g(τ)− τ | =
(

1− τ`
2

)
(τ + 1) ≤ δ,

uniformly for τ ∈ [−1, 1]. In addition, for large enough ` the trains T (Ês+(τ`, 0)) and
T (S+(0)) are arbitrarily small perturbations of one another. Since the final crossings
of (4.63) are both one-dimensional by Hypothesis 1.1, we conclude that the curves τ 7→



30 MITCHELL CURRAN AND ROBERT MARANGELL

Êu+(g(τ), 0) and τ 7→ Êu+(τ, 0) approach T1(Ês+(τ`, 0)) and T1(S+(0)), respectively, from the
same direction as τ → 1−. This proves the first equality in (4.64). It follows from Lemma 4.2

and Remark 3.5 that the crossing at τ` < 1 of the path τ 7→
(
Êu+(τ, 0), Ês+(τ`, 0)

)
is negative,

i.e. the crossing at τ = 1 of the first path in (4.63) is negative. In line with Definition 3.3,
if the final crossing is one-dimensional and transverse, its contribution to the Maslov index
is +1 if the path arrives at the train in the positive direction, and zero otherwise. Hence

Mas(Êu+(g(·), 0), Ês+(τ`, 0); [1− ε, 1]) = 0, and (4.64) follows. The proof for the L− problem
is similar. �

4.2. Computing the Maslov index along Γ2. In the following we prove monotonicity
of the paths λ 7→ (Eu±(`, λ),Es±(`, λ)).

Lemma 4.8. Each crossing of the path of Lagrangian pairs λ 7→ (Eu+(`, λ),Es+(`, λ)) is
positive. Thus,

Mas(Eu+(`, ·),Es+(`, ·); [ε, λ∞]) = P (4.65)

for ε > 0 small enough. Similarly, each crossing of the path λ 7→ (Eu−(`, λ),Es−(`, λ)) is
negative, and we have

Mas(Eu−(`, ·),Es−(`, ·); [ε, λ∞]) = −Q. (4.66)

Proof. We begin with the statements pertaining to L+. We proceed by computing the
(first-order) relative crossing form (3.28) at each crossing λ = λ0, given here by

mλ0(Eu+(`, ·),Es+(`, ·))(w0) =
d

dλ
ω(p(λ), w0)

∣∣
λ=λ0

− d

dλ
ω(q(λ), w0)

∣∣
λ=λ0

, (4.67)

where w0 ∈ W1(Eu+(`, ·),Es+(`, ·), λ0) = Eu+(`, λ0) ∩ Es+(`, λ0) and (p, q) is a root function

pair for
(
Eu+(`, ·),Es+(`, ·)

)
with p(λ0) = q(λ0) = w0. We compute each of the terms on the

right hand side separately.

For the first, recall that p(λ) ∈ Eu+(`, λ) for λ ∈ [λ0 − ε, λ0 + ε] with ε > 0 small. From
the definition of Eu+(`, λ), it follows that there exists a one-parameter family of solutions
λ 7→ u(·;λ) to (4.3) satisfying u(x;λ) → 0 as x → −∞, such that u(`;λ) = p(λ) and
u(`;λ0) = w0. Now

ω
( d
dλ

u(`, λ),u(`, λ)
)

=

∫ `

−∞
∂x ω(∂λu(x;λ),u(x;λ)) dx,

=

∫ `

−∞
ω
(
∂λ
[
A+(x;λ)u(x;λ)

]
,u(x;λ)

)
+ ω(∂λu(x;λ), A+(x;λ)u(x;λ)) dx,

=

∫ `

−∞
ω(∂λ (A+(x;λ)) u(x;λ),u(x;λ)) + ω(A+(x;λ)∂λu(x;λ),u(x;λ))

+ ω(∂λu(x;λ), A+(x;λ)u(x;λ)) dx,

=

∫ `

−∞
ω(∂λ (A+(x;λ)) u(x;λ),u(x;λ))

+
〈
[A+(x;λ)>J + JA+(x;λ)]∂λu(x;λ),u(x;λ)

〉
dx,

=

∫ `

−∞
ω(∂λ (A+(x;λ)) u(x;λ),u(x;λ)) dx,

(4.68)
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where we used that limx→−∞ u(x;λ) = 0 in the first line and (2.14) in the last line. Since

∂λA+(x;λ) =


0 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 0

 , (4.69)

and u = (u1, u2, u3, u4)
>, evaluating the last line of (4.68) at λ = λ0 we have

d

dλ
ω(p(λ), w0)

∣∣
λ=λ0

= ω
( d
dλ

u(`, λ),u(`, λ)
)∣∣
λ=λ0

=

∫ `

−∞
u2(x;λ0)

2 dx. (4.70)

For the second term of (4.67), we consider q(λ) ∈ Es+(`, λ) for λ ∈ [λ0 − ε, λ0 + ε] with
ε > 0 small. For the same w0 used to compute the first term of (4.67), there exists a
one-parameter family of solutions λ 7→ ũ(·;λ) to (4.3) satisfying ũ(x;λ) → 0 as x → +∞,
such that ũ(`;λ) = q(λ) and ũ(`;λ0) = w0. Arguing as previously, but now using the decay
at +∞, we have

d

dλ
ω(q(λ), w0)

∣∣
λ=λ0

= ω
( d
dλ

ũ(`;λ), ũ(`;λ)
)∣∣
λ=λ0

= −
∫ ∞
`

ũ2(x;λ0)
2 dx (4.71)

(where ũ = (ũ1, ũ2, ũ3, ũ4)
>). Importantly, by uniqueness of solutions we have ũ(·;λ0) =

u(·;λ0), so that the integrands in (4.71) and (4.70) are the same. Therefore, (4.67) becomes

mλ0(Eu+(`, ·),Es+(`, ·))(w0) =

∫ ∞
−∞

u2(x;λ0)
2 dx > 0. (4.72)

Thus n+(mλ0) = dimEu+(`, λ0) ∩ Es+(`, λ0), and all crossings are positive. It follows that
the Maslov index counts the number of crossings (up to dimension) of the Lagrangian pair
λ 7→ (Eu+(`, λ),Es+(`, λ)), λ ∈ [ε, λ∞], for ε > 0 small enough. But this is precisely a count
of the number of positive eigenvalues of L+ up to multiplicity, i.e. equation (4.65) holds.

For the path λ 7→ (Eu−(`, λ),Es−(`, λ)), λ ∈ [0, λ∞] the argument is similar, where now the
Maslov index counts, with negative sign, the number of crossings along Γ2. The sign change
results from the fact that λ now appears with positive sign in the first order system (4.6),
so that

∂λA−(x;λ) =


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 . (4.73)

The associated crossing form will then be negative, and by similar reasoning equation (4.66)
holds. �

4.3. Computing the Maslov index along Γ3 and Γ4. The following lemma shows that
there are no crossings along Γ3 and Γ4.

Lemma 4.9. We have Eu+(x, λ∞) ∩ Es+(`, λ∞) = {0} for all x ∈ R, provided both λ∞ > 0
and ` > 0 are large enough. In addition, U+(λ) ∩ Es+(`, λ) = {0} for all λ ≥ 0 provided
` > 0 is large enough. Therefore

Mas(Eu+(·, λ∞),Es+(`, λ∞); [−∞, `]) = Mas(U+(·),Es+(`, ·); [0, λ∞]) = 0. (4.74)

Similar statements hold for the paths x 7→
(
Eu−(x, λ∞),Es−(`, λ∞)

)
and λ 7→

(
U+(λ),Es+(`, λ

)
.

Proof. The strategy of the following proof mirrors the one given in [Cor19, §4] (see also
[AGJ90, §3 and §5.B]).
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For the first statement, we begin by noting that Spec(L+) is bounded from above. To see
this, note that we can write

L+ = A+ V, A = −∂xxxx − σ2∂xx, V = −β + 3φ(x)2, (4.75)

where dom(A) = H4(R), so that A = A∗ is selfadjoint and V is bounded and symmetric
on L2(R). It can be shown that A has no point spectrum, and moreover that Spec(A) =
Specess(A) = (−∞, 1/4] if σ2 = 1, and Spec(A) = Specess(A) = (−∞, 0] if σ = −1.
Consequently, by virtue of [Kat80, Theorem V.4.10, p.291] we have

dist (Spec(L+),Spec(A)) ≤ ‖V‖, (4.76)

so that Spec(L+) ⊆ (−∞, ‖V‖]. It then follows that Eu+(`, λ) ∩ Es+(`, λ) = {0} for all
λ > ‖V‖.

Next, we claim that there exists a λ∞ > ‖V‖ such that

Eu+(x, λ) ∩ S+(λ) = {0} (4.77)

for all x ∈ R and all λ ≥ λ∞. Once this is shown, it follows that there exists an `∞ � 1
such that

Eu+(x, λ∞) ∩ Es+(`, λ∞) = {0} (4.78)

for all x ∈ R and all ` ≥ `∞, because limx→∞ Es+(x, λ) = S+(λ). It remains to prove the
claim. We mimic the proof of [Cor19, Lemma 4.1]. Consider then the change of variables:

y = λ1/4x, ũ1 = u1, ũ2 = λ1/2u2, ũ3 = λ1/4u3, ũ4 = λ−1/4u4, (4.79)

under which the system (4.3) becomes

d

dy


ũ1
ũ2
ũ3
ũ4

 =


0 0 σ2√

λ
1

0 0 1 0
1 − σ2√

λ
0 0

− σ2√
λ

α

(
y
4√
λ

)
λ − 1 0 0



ũ1
ũ2
ũ3
ũ4

 (4.80)

(recall that α
(

y
4√
λ

)
= 3φ( y

4√
λ

)2−β+1). Taking y → ±∞, the asymptotic system for (4.80)

is given by

d

dy


ũ1
ũ2
ũ3
ũ4

 =


0 0 σ2√

λ
1

0 0 1 0
1 − σ2√

λ
0 0

− σ2√
λ

−β+1
λ − 1 0 0



ũ1
ũ2
ũ3
ũ4

 . (4.81)

Denote the stable and unstable subspaces for (4.81) by S̃+(λ) and Ũ+(λ) respectively, and

denote the unstable bundle of (4.80) by Ẽu+(y, λ). Then, we have

Eu+(x, λ) ∩ S+(λ) = {0} ⇐⇒ Ẽu+(λ1/4x, λ) ∩ S̃+(λ) = {0}, (4.82)

since from (4.79) one has Ẽu+(λ1/4x, λ) = M ·Eu(x, λ) and S̃+(λ) = M · S+(λ), where M =

diag{1, λ1/2, λ1/4, λ−1/4} is nonsingular and “ · ” is the induced action of M on R4.

Both the nonautonomous system (4.80) and the autonomous system (4.81) induce flows
on Gr2(R4), the Grassmannian of two dimensional subspaces of R4. For the flow associ-

ated with (4.81), it is known [AGJ90] that Ũ+(λ), the invariant subspace associated with
eigenvalues of positive real part, is an attracting fixed point. Thus, since L(2) ⊂ Gr2(R4),

there exists a trapping region R ⊂ L(2) containing Ũ+(λ). By taking λ large enough, we
can ensure that the flow induced by (4.80) is as close as we like to that induced by (4.81),

because φ
(

y
4√
λ

)2
/λ – the nonautonomous part of (4.80) – is close to zero. It follows that
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R ⊂ L(2) is also a trapping region for (4.80). Furthermore, we can choose R small enough

such that V ∩ S̃+(λ) = {0} for all V ∈ R, uniformly for λ large enough. To see this, note

that clearly S̃+(λ) ∩ Ũ+(λ) = {0}, while taking λ→ +∞ in (4.81) yields

d

dy


ũ1
ũ2
ũ3
ũ4

 =


0 0 0 1
0 0 1 0
1 0 0 0
0 −1 0 0



ũ1
ũ2
ũ3
ũ4

 , (4.83)

which has stable and unstable subspaces S̃+∞ and Ũ+∞ with respective frames (I,−W )
and (I,W ), where

W =
1√
2

(
1 1
1 −1

)
.

Thus, in the limit we also have S̃+∞ ∩ Ũ+∞ = {0}, so we can choose R as stated. Finally,
we note that if λ > ‖V‖ so that λ /∈ Spec(L+), then by [AGJ90, Lemma 3.7] we have

limy→∞ Ẽu+(y, λ) = Ũ+(λ). All in all, we conclude that for any λ = λ∞ > ‖V‖ large

enough, the trajectory Ẽu+(·, λ∞) : [−∞,∞] → L(2), which starts and finishes at Ũ+(λ∞),

will remain inside R and thus always be disjoint from S̃+(λ∞). This proves the claim.

For the second statement of the lemma, the facts that U+(λ) ∩ S+(λ) = {0} and
limx→∞ Es+(x, λ) = S+(λ) imply that there exists an `0 � 1 such that U+(λ) ∩ Es+(x, λ) =
{0} for all x ≥ `0. Taking ` > `0 gives the result. �

4.4. Proof of Theorem 4.1. In what follows, we choose ` > 0 and λ∞ > 0 large enough
so that the statements of Lemma 4.9 hold.

Proof of Theorem 4.1. By homotopy invariance and additivity under concatenation, we
have

Mas(Eu+(·, 0),Es+(`, 0); [−∞, `]) + Mas(Eu+(`, ·),Es+(`, ·); [0, λ∞])

−Mas(Eu+(·, λ∞),Es+(`, λ∞); [−∞, `])−Mas(Eu+(−∞, ·),Es+(`, ·); [0, λ∞]) = 0. (4.84)

From Lemma 4.9 the third and fourth terms on the left hand side vanish. Again using the
concatenation property, we find that

Mas(Eu+(·, 0),Es+(`, 0); [−∞, `− ε]) + Mas(Eu+(·, 0),Es+(`, 0); [`− ε, `])
+ Mas(Eu+(`, ·),Es+(`, ·); [0, ε]) + Mas(Eu+(`, ·),Es+(`, ·); [ε, λ∞]) = 0 (4.85)

where ε > 0 is small. The second and third terms of (4.85) represent the contributions to
the Maslov index from the conjugate point (x, λ) = (`, 0) at the top left corner of the Maslov
box in the x and λ directions respectively. From (4.64), Lemma 4.8 and Definition 3.3 we
have

Mas(Eu+(·, 0),Es+(`, 0); [`− ε, `]) = Mas(Eu+(`, ·),Es+(`, ·); [0, ε]) = 0. (4.86)

Lemmas 4.2 and 4.7 imply that

Mas(Eu+(·, 0),Es+(`, 0); [−∞, `− ε]) = −
∑
x∈R

dim
(
Eu+(x, 0) ∩ S+(0)

)
. (4.87)

The previous three equations along with Lemma 4.8 now yield (4.1).

The proof for the Morse index of the L− operator is similar. This time, crossings along Γ1

are positive, while crossings along Γ2 are negative. Arguing as we did for (4.64), we have

Mas(Eu−(·, 0),Es−(`, 0); [`− ε, `]) = 1, (4.88)
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and from Lemma 4.8 and Definition 3.3 we have

Mas(Eu−(`, ·),Es−(`, ·); [0, ε]) = −1. (4.89)

The contributions (4.88) and (4.89) coming from the corner crossing (x, λ) = (`, 0) thus
cancel each other out. Applying the same homotopy argument as we did for L+ yields the
formula for Q in the proposition. �

5. Proofs of the main results

We now return to the computation of the Maslov indices appearing on the left hand side
of (3.45). After computing each, we provide the proofs of Theorems 1.2 and 1.6. We begin
with Γ1.

Lemma 5.1. Mas(Eu(·, 0),Es(`, 0); [−∞, `− ε]) = Q− P , where ε > 0 is small.

Proof. Recall that when λ = 0 the eigenvalue equations (1.13) decouple. Consequently, the
equations for the u and v components in the first order system (2.2) also decouple. Hence,
for each x ∈ R,

Eu(x, 0) = Eu+(x, 0)⊕ Eu−(x, 0), (5.1)

in the sense that for any w ∈ Eu(x, 0) we have

w =



u1
0
u2
0
u3
0
u4
0


+



0
v1
0
v2
0
v3
0
v4


, (5.2)

where u = (u1, u2, u3, u4)
> ∈ Eu+(x, 0) and v = (v1, v2, v3, v4)

> ∈ Eu−(x, 0). By the same
reasoning, for the reference plane we have

Es(`, 0) = Es+(`, 0)⊕ Es−(`, 0). (5.3)

Now using property (3) of Proposition 3.4, we have

Mas(Eu(·, 0),Es(`, 0); [−∞, `− ε]) = Mas(Eu+(·, 0),Es+(`, 0); [−∞, `− ε])
+ Mas(Eu−(·, 0),Es−(`, 0); [−∞, `− ε]),

(5.4)

and the result follows combining equations (4.87) and (4.1) (and the accompanying state-
ments for L−). �

Next, we show that there are no crossings along Γ3 and Γ4.

Lemma 5.2. There exists `1 � 1 such that Eu(x, λ∞)∩Es(`, λ∞) = {0} for all x ∈ R and
all ` ≥ `1, provided λ∞ > 0 is large enough. Therefore, for all ` ≥ `1,

Mas(Eu(·, λ∞),Es(`, λ∞); [−∞, `]) = 0.

In addition, U(λ)∩Es(`, λ) = {0} for all λ ≥ 0 provided ` > 0 is large enough. Consequently,

Mas(U(·),Es(`, ·); [0, λ∞]) = 0.
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Proof. For the first assertion, note that N is a bounded perturbation of a skew-selfadjoint
operator, so that its spectrum lies in a vertical strip around the imaginary axis in the
complex plane. More precisely, we have that

iN = Ã+ Ṽ, Ã = i

(
0 ∂xxxx + σ2∂xx

−∂xxxx − σ2∂xx 0

)
, Ṽ = i

(
0 β − φ2

−β + 3φ2 0,

)
(5.5)

where, with dom(Ã) = dom(N), Ã∗ = Ã is selfadjoint in L2(R) and Ṽ is bounded. Now
using [Kat80, Remark 3.2, p.208] and [Kat80, eq. (3.16), p.272], we conclude that

ζ ∈ Spec(Ã+ Ṽ) =⇒ |Im(ζ)| ≤ ‖Ṽ‖. (5.6)

By the spectral mapping theorem, Spec(iN) = iSpec(N). It follows that

λ ∈ Spec(N) =⇒ |Re(λ)| ≤ ‖Ṽ‖. (5.7)

Thus, for all λ > ‖Ṽ‖ we have Eu(`, λ) ∩ Es(`, λ) = {0}.

The proof now follows from the same arguments used to prove the first assertion in Lemma 4.9.
Namely, via the change of variables (4.79) along with

ṽ1 = v1, ṽ2 = λ1/2v2, ṽ3 = λ1/4v3, ṽ4 = λ−1/4v4 (5.8)

we can rewrite (2.2) as

d

dy



ũ1
ṽ1
ũ2
ṽ2
ũ3
ṽ3
ũ4
ṽ4


=



0

σ2√
λ

0 1 0

0 − σ2√
λ

0 1

1 0 0 0
0 1 0 0

1 0 − σ2√
λ

0

0 −1 0 − σ2√
λ

− σ2√
λ

0 α(x)
λ 1

0 − σ2√
λ

1 η(x)
λ

0





ũ1
ṽ1
ũ2
ṽ2
ũ3
ṽ3
ũ4
ṽ4


. (5.9)

Again, the flow of the associated asymptotic system is close to that of (5.9) for large λ.
From the transversality of the four dimensional stable and unstable subspaces of the limiting
system of (5.9) as λ→∞, i.e.

d

dy



ũ1
ṽ1
ũ2
ṽ2
ũ3
ṽ3
ũ4
ṽ4


=



0

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

0





ũ1
ṽ1
ũ2
ṽ2
ũ3
ṽ3
ũ4
ṽ4


, (5.10)

one can show that there exists a λ∞ > ‖Ṽ‖ such that Eu(x, λ) and S(λ) are transverse for
all x ∈ R and all λ ≥ λ∞. Hence Eu(x, λ) and Es(`, λ∞) are transverse for all x ∈ R, ` ≥ `∞
and λ ≥ λ∞. The second assertion follows from the same arguments used to prove the
second assertion in Lemma 4.9. �

For the proof of Theorem 1.2, it remains to compute the contribution to the Maslov index
from the conjugate point (x, λ) = (`, 0), i.e.

c := Mas(Eu(·, 0),Es(`, 0); [`− ε, `]) + Mas(Eu(`, ·),Es(`, ·); [0, ε]). (5.11)
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For the first term in (5.11), i.e. the arrival along Γ1, again using property (3) of Proposi-
tion 3.4 and equations (4.86) and (4.88), we have

Mas(Eu(·, 0),Es(`, 0); [`− ε, `]) = Mas(Eu+(·, 0),Es+(`, 0); [`− ε, `])
+ Mas(Eu−(·, 0),Es−(`, 0); [`− ε, `]),

= 1.

(5.12)

For the second term in (5.11), i.e. the departure along Γ2, we compute crossing forms. To
that end, suppose λ = λ0 ∈ [0, λ∞] (not necessarily zero) is a crossing of the Lagrangian
pair λ 7→ (Eu(`, λ),Es(`, λ)). The first-order relative crossing form (3.28) is given by

mλ0(Eu(`, ·),Es(`, ·))(w0) =
d

dλ
ω(r(λ), w0)

∣∣
λ=λ0

− d

dλ
ω(s(λ), w0)

∣∣
λ=λ0

, (5.13)

where w0 ∈ W1(Eu(`, ·),Es(`, ·), λ0) = Eu(`, λ0) ∩ Es(`, λ0) and (r, s) is a root function
pair for (Eu(`, ·),Es(`, ·)) with r(λ0) = s(λ0) = w0. As in the proof of Lemma 4.8, we
compute each of these terms separately. For the first, noting that r(λ) ∈ Eu(`, λ) for
λ ∈ [λ0 − ε, λ0 + ε], it follows from the definition of Eu(`, λ) that there exists a one-
parameter family of solutions λ 7→ w(·;λ) to (2.2), such that w(x;λ) → 0 as x → −∞,
w(`;λ) = r(λ) and w(`;λ0) = w0. Thus

d

dλ
ω(r(λ), w0)

∣∣
λ=λ0

= ω
( d
dλ

w(`, λ),w(`, λ)
)∣∣
λ=λ0

,

and a calculation similar to (4.68) with

∂λA(x;λ) =

(
04 04
A21 04

)
, A21 =

(
0 0
0 1

)
⊗
(

0 1
1 0

)
, (5.14)

and w = (u1, v2, u2, v2, u3, v3, u4, v4)
> yields

d

dλ
ω(r(λ), w0)

∣∣
λ=λ0

= −2

∫ `

−∞
u2(x;λ0)v2(x;λ0) dx.

For the second term in (5.13) and the same fixed w0, associated with s(λ) ∈ Es(`, λ) is a
family of solutions λ 7→ w̃(·;λ) to (2.2) such that w̃(x;λ)→ 0 as x→ +∞, w̃(`;λ) = s(λ)
and w̃(`;λ0) = w0. Arguing as for the first term of (5.13), but now using the decay at +∞,
we have

d

dλ
ω(s(λ), w0)

∣∣
λ=λ0

= ω
( d
dλ

w̃(`;λ), w̃(`;λ)
)∣∣∣
λ=λ0

= 2

∫ ∞
`

ũ2(x;λ0)ṽ2(x;λ0) dx.

Using uniqueness of solutions as in the proof of Lemma 4.8, we conclude

mλ0(Eu(`, ·),Es(`, ·))(w0) = −2

∫ ∞
−∞

u2(x;λ0)v2(x;λ0) dx. (5.15)

Remark 5.3. The form (5.15) is not sign definite, and therefore the Maslov index does
not afford an exact count of the crossings of the path λ 7→ (Eu(`, ·),Es(`, ·)) for λ ∈ [0, λ∞].
This will be the reason for the inequality (and not equality) (1.19) in Theorem 1.2.

We now evaluate the form (5.15) at λ0 = 0, where W1((Eu(`, ·),Es(`, ·), 0) = Eu(`, 0) ∩
Es(`, 0). Recalling (3.40), we have Eu(`, 0) ∩ Es(`, 0) = span{φφφ(`),ϕϕϕ(`)}, where φφφ and ϕϕϕ
are given in (3.39). Hence, it suffices to evaluate (5.15) on w0 = φφφ(`)k1 +ϕϕϕ(`)k2 for some
k1, k2 ∈ R. Evidently, the family w(·; 0) = w̃(·; 0) described above is given by w(x; 0) =
φφφ(x)k1 +ϕϕϕ(x)k2, so that u2(x; 0) = φ′(x)k1 and v2(x; 0) = −φ(x)k2. Hence

mλ0(Eu(`, ·),Es(`, ·))(w0) = 2

∫ ∞
−∞

(φ′k1)(φk2) dx =

(∫ ∞
−∞

d

dx
φ2 dx

)
k1k2 = 0, (5.16)

since φ ∈ H4(R). That is, the relative crossing form mλ0 in (5.13) is identically zero
at λ0 = 0, and the conjugate point (`, 0) is non-regular in the λ direction. Therefore,
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W2(Eu(`, ·),Es(`, ·), 0) = kermλ0(Eu(`, ·),Es(`, ·)) = Eu(`, 0) ∩ Es(`, 0), and we need to
compute higher order crossing forms.

To that end, in this case the second-order relative crossing form (3.28) at λ0 = 0 is given
by

m
(2)
λ0

(Eu(`, ·),Es(`, ·))(w0) =
d2

dλ2
ω(r(λ), w0)

∣∣
λ=0
− d2

dλ2
ω(s(λ), w0)

∣∣
λ=0

, (5.17)

where w0 ∈ Eu(`, 0) ∩ Es(`, 0) and (r, s) is a root function pair for (Eu(`, ·),Es(`, ·)) with
r(0) = s(0) = w0 and ṙ(0) = ṡ(0). (Dot denotes d/dλ.) For the first term of (5.17), we
again have a one-parameter family λ → w(·;λ) decaying to zero as x → −∞ such that
w(`;λ) = r(λ) and w(`; 0) = w0. Now

ω
( d2
dλ2

w(`, λ),w(`, λ)
)

=

∫ `

−∞
∂x ω(∂λλw(x;λ),w(x;λ))dx,

=

∫ `

−∞
ω (∂λλ [A(x;λ)w(x;λ)] ,w(x;λ)) + ω (∂λλw(x;λ), A(x;λ)w(x;λ)) dx,

=

∫ `

−∞
ω(Aλλ(x;λ)w(x;λ),w(x;λ)) + 2ω(Aλ(x;λ)∂λw(x;λ),w(x;λ))

+ ω(A(x;λ)∂λλw(x;λ),w(x;λ)) + ω (∂λλw(x;λ), A(x;λ)w(x;λ)) dx,

=

∫ `

−∞
〈[A(x;λ)>J + JA(x;λ)]∂λλw(x;λ),w(x;λ)〉

+ 2ω(Aλ(x;λ)∂λw(x;λ),w(x;λ)) dx,

= 2

∫ `

−∞
ω(Aλ(x;λ)∂λw(x;λ),w(x;λ))dx,

(5.18)

where we used (2.14) and Aλλ(x;λ) = 0. Using (5.14) and evaluating at λ = 0, we find

d2

dλ2
ω(r(λ), w0) = ω

( d2
dλ2

w(`, λ),w(`, λ)
)∣∣∣
λ=0

,

= −2

∫ `

−∞
u2(x; 0)∂λv2(x; 0) + v2(x; 0)∂λu2(x; 0) dx. (5.19)

For the second term in (5.17), we have a family λ → w̃(·;λ) decaying to zero as x → +∞
such that w̃(`;λ) = s(λ) and w̃(`; 0) = w0, and a similar argument to that used to arrive
at (5.19) shows

m
(2)
λ0

(Es(`, ·),Eu(`, 0))(q) = 2

∫ ∞
`

ũ2(x; 0)∂λṽ2(x; 0) + ṽ2(x; 0)∂λũ2(x; 0) dx. (5.20)

By uniqueness of solutions we have w(·; 0) = w̃(·; 0). Furthermore, since ṙ(0) = ṡ(0),

∂λw(`; 0) = ṙ(0) = ṡ(0) = ∂λw̃(`; 0). (5.21)

Now, both ∂λw(·; 0) and ∂λw̃(·; 0) solve the inhomogeneous differential equation

d

dx
(∂λw) = A (∂λw) +Aλ (φφφk1 +ϕϕϕk2) , (5.22)

obtained by differentiating (2.3) with respect to λ and evaluating at λ = 0, and using that
w(·; 0) = φφφk1 +ϕϕϕk2. (Note that k1, k2 ∈ R are determined by the fixed vector w0, where
w0 = w(`; 0) = φφφ(`)k1+ϕϕϕ(`)k2.) It follows from (5.21) and uniqueness of solutions of (5.22)
that indeed ∂λw(x; 0) = ∂λw̃(x; 0) for all x ∈ R. Collecting (5.19) and (5.20) together,
(5.17) then becomes

m
(2)
λ0

(Eu(`, ·),Es(`, ·))(w0) = −2

∫ ∞
−∞

u2(x; 0)∂λv2(x; 0) + v2(x; 0)∂λu2(x; 0) dx. (5.23)
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We need to understand the function ∂λw(·; 0). Notice that it solves the inhomogeneous
equation (5.22) if and only if its third and fourth entries ∂λu2(·; 0) and ∂λv2(·; 0) solve

N

(
∂λu2(·; 0)
−∂λv2(·; 0)

)
=

(
φx k1
−φk2

)
. (5.24)

This follows from differentiating the eigenvalue equation (1.14) with respect to λ, evaluating
at λ = 0 and making the substitutions (as in (2.1))

∂λu(·; 0) = ∂λu2(·; 0), ∂λv(·; 0) = −∂λv2(·; 0), u(·; 0) = φx k1, v(·; 0) = −φk2.
Both equations in (5.24),

−L−∂λv2(·; 0) = −φx k1,
L+∂λu2(·; 0) = −φk2,

(5.25)

are solvable by virtue of the Fredholm alternative, since 〈φ′, φ〉L2(R) = 0 and hence φx ∈
ker(L−)⊥ and φ ∈ ker(L+)⊥. Denoting by v̂ and û any solutions to

− L−v = φx and L+u = φ (5.26)

in H4(R) respectively (note the sign change in both equations from (5.25)), (5.23) becomes

m
(2)
λ0

(Eu(`, ·),Es(`, ·))(w0) = 2

(∫ ∞
−∞

φx v̂ dx

)
k21 − 2

(∫ ∞
−∞

φ û dx

)
k22, (5.27)

recalling that u2 = φxk1 and v2 = −φk2.

Having computed the form, we count the number of negative squares. Using (3.18), and
defining I1 and I2 as in (1.18), we find that

Mas(Eu(`, ·),Es(`, ·); [0, ε]) = −n−(m
(2)
λ0

) =


0 I1 > 0, I2 < 0,

−1 I1I2 > 0,

−2 I1 < 0, I2 > 0.

(5.28)

Recalling the definition of c in (5.11) and using (5.12) yields the following.

Lemma 5.4. The value of c is given by

c =


1 I1 > 0, I2 < 0,

0 I1I2 > 0,

−1 I1 < 0, I2 > 0.

(5.29)

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. By homotopy invariance and additivity under concatenation, we
have

Mas(Eu(·, 0),Es(`, 0); [−∞, `]) + Mas(Eu(`, ·),Es(`, ·); [0, λ∞])

−Mas(Eu(·, λ∞),Es(`, λ∞); [−∞, `])−Mas(Eu(−∞, ·),Es(`, ·); [0, λ∞]) = 0.

By Lemma 5.2 the last two terms on the left hand side vanish. Recalling the definition of
c from (3.46) and using the concatenation property once more,

Mas(Eu(·, 0),Es(`, 0); [−∞, `− ε]) + c + Mas(Eu(`, ·),Es(`, ·); [ε, λ∞]) = 0. (5.30)

Since the Maslov index counts signed crossings, the number of crossings along Γ2 for λ > 0
is bounded from below by the absolute value of the Maslov index of this piece, i.e.

n+(N) ≥ |Mas(Eu(`, ·),Es(`, ·); [ε, λ∞])|. (5.31)

Combining (5.30) and (5.31) with Lemma 5.1, the inequality (1.19) follows. The statement
of the theorem then follows from the computation of c in Lemma 5.4. �
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Remark 5.5. In practice, it is more tractable to compute P and Q via Theorem 4.1. Thus,
an alternate form of (1.19) is given by

n+(N) ≥

∣∣∣∣∣∑
x∈R

dim
(
Eu+(x, 0) ∩ S+(0)

)
−
∑
x∈R

dim
(
Eu−(x, 0) ∩ S−(0)

)
− c

∣∣∣∣∣ . (5.32)

We conclude with the proof of Theorem 1.6, for which we will need the following lemma. The
first assertion gives a sufficient condition for monotonicity of the Maslov index along Γ2, and
is adapted from [CCLM23, Lemma 5.1]. The second assertion is given in [CCLM23, Lemma
5.2].

Lemma 5.6. If L− is a nonpositive operator, then each crossing λ = λ0 > 0 of the path
λ 7→ (Eu(`, λ),Es(`, λ)) is positive. Moreover, in this case Spec(N) ⊂ R ∪ iR.

Proof. If λ = λ0 is a crossing then the eigenvalue equations

− L−v = λ0u, L+u = λ0v (5.33)

are satisfied for some ũ, ṽ ∈ H4(R). Notice that λ0 > 0 necessitates that both ũ and ṽ are
nontrivial.

Solving the first equation in (5.33) yields ṽ = αφ + ṽ⊥ for some α ∈ R, where ker(L−) =
span{φ} and ṽ⊥ ∈ ker(L−)⊥. Therefore

〈L−ṽ, ṽ〉L2(R) = 〈L−(αφ+ ṽ⊥), αφ+ ṽ⊥〉L2(R) = 〈L−ṽ⊥, ṽ⊥〉L2(R) < 0 (5.34)

because L− is nonpositive and v̂⊥ ∈ ker(L−)⊥. Now analysing the crossing form (5.15) for
the path λ 7→ (Eu(`, λ),Es(`, λ)), where v2 = −ṽ and u2 = ũ, we have

mλ0(Eu(`, ·),Es(`, ·))(q) = − 2

λ0

∫ ∞
−∞

(λ0 u2) v2 dx = − 2

λ0
〈L−ṽ, ṽ〉L2(R) > 0,

which was to be proven. The second statement may be proven using similar arguments as
in the proof of [CCLM23, Lemma 5.1]. Namely, we can rewrite (1.14) as the selfadjoint
eigenvalue problem

(−L−|Xc)
1/2 ΠL+Π (−L−|Xc)

1/2w = λ2w, (5.35)

where Xc = ker(L−)⊥, Π is the orthogonal projection in L2(R) onto Xc, (−L−|Xc)
1/2 is

well-defined because −L− is nonnegative, and w = (−L−|Xc)
1/2 Πv. It follows that λ2 ∈ R.

For more on the equivalence of (1.14) with (5.35), see [CCLM23, Lemma 3.21]. We omit
the details here. �

Proof of Theorem 1.6. If Q = 0 then it follows from Lemma 5.6 that

Mas(Eu(`, ·),Es(`, ·); [ε, λ∞]) = n+(N) (5.36)

for ε small enough. Using this and Lemma 5.1 in (5.30), we obtain

n+(N) = P −Q− c = 1− c. (5.37)

For the evaluation of c, using (5.26) we can write

I1 =

∫ ∞
−∞

φx v̂ dx = −
∫ ∞
−∞

(L−v̂) v̂ dx, (5.38)

so that if Q = 0 then I1 ≥ 0. An argument similar to (5.34) shows that in fact I1 > 0.
Lemma 5.4 now yields the value of c. In particular, if I2 > 0, then c = 0 and n+(N) = 1.
On the other hand, if I2 < 0, then c = 1 and n+(N) = 0; by the second assertion of
Lemma 5.6, this means Spec(N) ⊂ iR. �
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6. Application: spectral stability of the Karlsson and Höök solution

In this section we apply our theory to confirm the spectral stability of the Karlsson and
Höök solution (1.8), i.e.

φKH(x) =

√
3

10
sech2

(
x

2
√

5

)
, (6.1)

which solves (1.5) for β = 4/25, σ2 = −1. Note that in this case Specess(L±) = (−∞,−4/25).
While orbital stability was proven in [NP15], the following serves to showcase how our an-
alytical results may be implemented for a given standing wave.

In Fig. 2, we have plotted the set of points in the λx-plane where the unstable bundle non-
trivially intersects the stable subspace of the asymptotic system for each of the eigenvalue
problems for L+ and L−. More precisely, for L+ problem we have the following construc-
tion (the construction for the L− problem is similar). We denote the eigenvalues of the
λ-dependent asymptotic matrix A+(λ) by {±µ1(λ),±µ2(λ)} and the corresponding stable
and unstable eigenvectors by p1,2(λ) and u1,2(λ) respectively, so that for i = 1, 2,

ker (A+(λ) + µi(λ)) = span{pi(λ)}, ker (A+(λ)− µi(λ)) = span{qi(λ)}

(similar to (4.12)–(4.14)). Collecting the vectors s1,2 in the columns of a 4 × 2 frame and
right multiplying by the inverse of the resulting upper 2× 2 block yields the following real
frame for S+(λ), (

I
S+(λ)

)
, S+(λ) ∈ R2×2. (6.2)

Next, we require a frame for the unstable bundle, suitably initialised. Making similar
manipulations as above on the scaled unstable eigenvectors e−µ1(λ)`u1(λ), e−µ2(λ)`u2(λ)
yields a real frame for the unstable subspace, which we denote by(

I
U+(λ)

)
, U+(λ) ∈ R2×2. (6.3)

A frame for the unstable bundle is then given by solutions to (4.3) initialised at (6.3).
We denote this frame by U+(x, λ) = (X+(x, λ), Y+(x, λ)). The eigenvalue curves are then
given by the locus of points (λ, x) such that

det

(
X+(x, λ) I
Y+(x, λ) S+(λ)

)
= det(S+(λ)X+(x, λ)− Y+(x, λ)) = 0, (6.4)

see Fig. 2. (The name follows from the fact that each point (λ, x) on such curves represents
an eigenvalue λ of the operator L± with domain dom(L±) = {u ∈ H4(−∞, s) : (u′′(s) +
σ2u(s),∓u(s),∓u′(s), u′′′(s)) ∈ S±(λ)}.) The intersections of the eigenvalue curves with Γ1

(where λ = 0) thus represent conjugate points, while the crossings along Γ2 (where x = `)
represent the eigenvalues of L±.

Remark 6.1. Strictly speaking, as per our analysis we should be using Es±(x, `) for some
large ` as our reference plane. However, for the purposes of graphical illustration, it suffices
to use S±(λ), the train of which is an arbitrarily small perturbation of the train of Es±(x, `)
(for large enough `.)

From Fig. 2, we conclude that there is one conjugate point for the L+ problem, while there
are none for the L− problem (the eigenvalue curve in each subfigure which is asymptotic to
λ = 0 never crosses λ = 0). Theorem 4.1 correctly predicts the number of crossings along
Γ2 in both cases, i.e. P = 1, Q = 0. By Theorem 1.6, spectral stability of the Karlsson and
Höök solution is thus determined by the sign of I2. Using the theory developed in [Alb92],
it was shown in [NP15, Remark 4.6] that I2 < 0. Hence φKH is spectrally stable.
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(a) L+ eigenvalue curves.

Γ1

Γ2

Γ3

Γ4

-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

-6

-4

-2

0

2

4

6

λ

x

(b) L− eigenvalue curves.

Figure 2. L+ and L− eigenvalue curves and Maslov box for the Karlsson and Höök
solution φKH, where β = 4/25, σ2 = −1 and ` = 7. In both cases, an eigenvalue curve is
asymptotic to the line λ = 0 (but never crosses).

7. Concluding remarks

Theorem 1.2 remains true for pure quartic solitons, i.e. standing wave solutions to (1.1)
with β2 = 0. In this case, non-dimensionalising (1.1) with the transformations (assuming
γ > 0 and β4 < 0)

ψ =

√
24γ

|β4|
Ψ, z =

24

|β4|
x,

leads to (1.3) (after interchanging z back to x) with σ2 = 0. Thus, our proof of Theorem 1.2
can be applied to PQSs simply by setting σ2 = σ22 = 0 (for example, in (2.2) one has
α(x) = 3φ(x)2 − β and η(x) = −φ(x)2 + β). The conditions (1.10),(1.11) are now replaced
with β > 0; this ensures that both the origin in (1.7) is hyperbolic, and the essential spectra
of L± are confined to the negative half line, Specess(L±) ⊂ R−, so that P and Q are well-
defined. The crossing form calculations in Section 4 and Section 5 are identical; setting
σ2 = 0 and requiring that β > 0 preserves the signatures of the forms.

In this work, similar to the analyses in [Cor19,HLS18,How23], the central objects are La-
grangian pairs comprising the unstable and stable bundles. For the fourth order selfadjoint
eigenvalue problems discussed in Section 4, where we considered the pairs

Γ 3 (x, λ) 7→ (Eu±(x, λ),Es±(`, λ)) ∈ L(2)× L(2), (7.1)

we showed that monotonicity holds in both the spectral and spatial parameters. Another
possible choice for the second entry of the pair in (7.1), as in [BJP24,How23], is to use the
(fixed) sandwich plane with frame 

1 0
0 0
0 0
0 1

 ,

with respect to which we expect the unstable bundles Eu±(x, λ) will be monotonic in both x
and λ. It should then be possible to argue as in [BCJ+18,BJP24], by first considering the
problem on the half line (−∞, `] for large `, and then using asymptotic arguments similar
to those in [SS00] to recover a Morse–Maslov theorem on the full domain R. However,
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for the eigenvalue problem for N , it is unclear how using the sandwich reference plane (of
R8) would affect the existence of a crossing at the top left corner of the Maslov box, the
contribution of which is significant in the lower bound of Theorem 1.2.

Generally speaking, a rigorous proof of spectral stability or instability using the Maslov
index is a two-step process. The first involves proving some kind of monotonicity result
assuming the existence of conjugate points, allowing one to relate a certain spectral index
of a linear operator to a count of the conjugate points. The second involves proving the
existence (or non-existence) of conjugate points given a particular stationary state. This
can either be done numerically [BJ22, BJP24], or even analytically (see, for example, the
beautiful argument in [BCJ+18] which exploits the reversibility symmetry of the underly-
ing PDE). Practically, our lower bound would be useful in the following cases: (1) using
Corollary 1.5 to prove instability by showing |P − Q| ≥ 2, and (2) when either P = 0 or
Q = 0. As pointed out in Section 5, in the latter case our lower bound becomes an exact
count, n+(N) = |P − Q − c|, and spectral stability or instability follows by showing that
|P −Q− c| = 0 or |P −Q− c| ≥ 1, respectively.

Finally, we comment on the case when either I1 = 0 or I2 = 0. In this case, the second
order form (5.27) is degenerate, and one proceeds by computing the third order crossing
form. The Fredholm Alternative dictates that the algebraic multiplicity of 0 ∈ Spec(N)
increases by one for each quantity I1, I2 that vanishes. Similar to (5.27), any third order
form will be given by the L2(R) inner products, akin to I1 and I2, of functions in ker(N)
and ker(N3)\ ker(N2). Due to the Hamiltonian structure of N , which implies an even
symmetry in Spec(N), we expect that all higher order crossing forms of odd order will be
identically zero, and the contribution to the Maslov index will come from the negative index
of any nondegenerate even order forms.

A. Appendix: Removal of Hypothesis 4.4.

In order to complete the proof of Lemma 4.2, i.e. monotonicity in the spatial parameter
of the paths x 7→ (Eu±(x, 0), S±(0)), we need to account for the case when Hypothesis 4.4
fails, i.e. φ(x0) = 0. In this case, all of the crossing forms computed in the proof of
Lemma 4.2 are identically zero, and we need to compute higher order crossing forms. The
key observation here is that since φ solves the standing wave equation (1.5), a fourth
order ordinary differential equation, for every x ∈ R at least one of the elements of the
set {φ(x), φ′(x), φ′′(x), φ′′′(x)} is nonzero. As we will see, it will follow that computing
sufficiently many higher order crossing forms will yield enough nonzero summands in the
left hand side of (3.12), i.e. such that

∑
k≥1

(
n+(m(k)

x0 ) + n−(m(k)
x0 )
)

= dimEu±(x0, 0) ∩ S±(0). (A.1)

Similar to the proof of Lemma 4.2, we separate the analyses depending on the nature of
the intersection Eu±(x0, 0)∩ S±(0), and focus on the L+ problem only; the proof for the L−
problem is similar. We further split the analysis of each of these cases into three subcases
based on the lowest nonzero derivative of φ at x0. Since the calculations are involved and
similar to those in the proof of Lemma 4.2, in the interest of expediency we present only
the main results.
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The following facts are needed for the results listed thereafter. If φ(x0) = 0 and φ′(x0) 6= 0,
then it follows from (4.27) and (4.26) that

C+ = S+B+S+, C ′+ = 0, C ′′(x0) =

(
0 0
0 6φ′(x0)

2

)
. (A.2)

If φ(x0) = φ′(x0) = 0 and φ′′(x0), then

C+ = S+B+S+, C ′′′+ = C ′′+ = C ′+ = 0, C
(4)
+ (x0) =

(
0 0
0 18φ′′(x0)

2

)
. (A.3)

Finally, if φ(k)(x0) = 0 for 0 ≤ k ≤ 2 and φ′′′(x0) 6= 0, then C+ = S+B+S+ and

C
(5)
+ = C

(4)
+ = C ′′′+ = C ′′+ = C ′+ = 0, C

(6)
+ (x0) =

(
0 0
0 60φ′′′(x0)

2

)
. (A.4)

Expressions for derivatives of X(x) and Y (x) at x0 up to order 9 are required, and can be
simplified using (A.2) – (A.4) where appropriate. The vectors hi are found using (3.7); in
particular, assuming the set {h0, . . . , hk−2} satisfies (3.7), then {h0, . . . , hk−2, hk−1} solves

(Y0 − S+X0)hk−1 = −
k−2∑
i=0

(
k − 1

i

)(
Y (k−1−i)(x0)− S+X(k−1−i)(x0)

)
hi. (A.5)

In this case the forms m
(k)
x0 are computed via (3.8), which amounts to

m(k)
x0 (Eu+(·, 0), S+(0))(w0) = −

k−1∑
i=0

(
k

i

)〈(
Y (k−i)(x0)− S+X(k−i)(x0)

)
hi, k0

〉
. (A.6)

Case 1: dimEu+(x0, 0) ∩ S+(0) = 1, b0 6= 0. In this case (4.29) holds, i.e. W1 = Eu+(x0, 0) ∩
S+(0) = span{a0s1 + b0s2} for some fixed a0 and b0 6= 0.

Case (i): φ(x0) = 0, φ′(x0) 6= 0. An identical calculation to that in the proof of (4.2)

shows that h1 ∈ ker(Y0 − S+X0) and m
(2)
x0 = 0. Using (A.2), it can be shown that h2 ∈

ker(Y0 − S+X0) and

m(3)
x0 (Eu+(·, 0),S+(0))(w0) = −

〈
C ′′+k0, k0

〉
= −6[φ′(x0)]

2b20 < 0. (A.7)

Case (ii): φ(x0) = 0, φ′(x0) = 0, φ′′(x0) 6= 0. We now have m
(k)
x0 = 0 for k = 1, 2, 3.

Using that C ′′′+ (x0) = C ′′+(x0) = 0, it can be shown that h3 ∈ ker(Y0 − S+X0). With

hk ∈ ker(Y0 − S+X0) for k = 1, 2, 3, one finds m
(4)
x0 = 0. For the fifth order form, one

additionally has h4 ∈ ker(Y0 − S+X0) and

m(5)
x0 (Eu+(·, 0), S+(0))(w0) = −

〈
C

(4)
+ k0, k0

〉
= −18

[
φ′′(x0)

]2
b20 < 0. (A.8)

Case (iii): φ(x0) = 0, φ′(x0) = φ′′(x0) = 0, φ′′′(x0) 6= 0. Now m
(k)
x0 = 0 for k = 1, 2, 3, 4, 5.

Using C
(5)
+ (x0) = C

(4)
+ (x0) = 0, it can be shown that h5 ∈ ker(Y0 − S+X0) and m

(6)
x0 = 0.

Moreover, one finds h6 ∈ ker(Y0 − S+X0) and

m(7)
x0 (Eu+(·, 0),S+(0))(w0) = −

〈
C

(6)
+ k0, k0

〉
= −60

[
φ′′′(x0)

]2
b20 < 0. (A.9)

Case 2: dimEu+(x0, 0) ∩ S+(0) = 1, b0 = 0. In this case (4.30) holds, i.e. W1 = Eu+(x0, 0) ∩
S+(0) = span{s1}, and for any i ≥ 1, we have C

(i)
+ k0 = 0.

Case (i): φ(x0) = 0, φ′(x0) 6= 0. As in the proof of Lemma 4.2, we have m
(k)
x0 = 0 for k =

1, 2, 3. Using (A.2) and hk ∈ ker(Y0−S+X0) for k = 1, 2, one finds that h3 ∈ ker(Y0−S+X0)
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and m
(4)
x0 = 0. With these hk one then finds that h4 satisfies

(Y0 − S+X0)h4 = −3C ′′+B+Y0h0 = −3C ′′+B+S+k0, (A.10)

and

m(5)
x0 (Eu+(·, 0), S+(0))(w0) = −3 · 4

〈
S+B+C

′′
+B+S+k0, k0

〉
= −3 · 4

(
6φ′(x0)

2a20
2
√
β − σ2

)
< 0.

Case (ii): φ(x0) = φ′(x0) = 0, φ′′(x0) 6= 0. Now C ′′′+ = C ′′+ = C ′+ = 0, and m
(k)
x0 = 0 for k =

1, 2, 3, 4, 5. With hk ∈ ker(Y0−S+X0) for k = 1, 2, 3, 4, one finds that h5 ∈ ker(Y0−S+X0)

and m
(6)
x0 = 0. With these hk one finds that h6 satisfies

(Y0 − S+X0)h6 = −5C
(4)
+ B+S+k0, (A.11)

and

m(7)
x0 (Eu+(·, 0),S+(0))(w0) = −5 · 6

〈
S+B+C

(4)
+ B+S+k0, k0

〉
= −5 · 6

(
18φ′′(x0)

2a20
2
√
β − σ2

)
< 0.

Case (iii): φ(x0) = φ′(x0) = φ′′(x0) = 0, φ′′′(x0) 6= 0. Now C
(i)
+ = 0 for 1 ≤ i ≤ 5, and

m
(k)
x0 = 0 for all 1 ≤ k ≤ 7. With hk ∈ ker(Y0 − S+X0) for 1 ≤ k ≤ 6, one finds that

h7 ∈ ker(Y0 − S+X0) and m
(8)
x0 = 0. With these hk one finds that h8 satisfies

(Y0 − S+X0)h8 = −7C
(6)
+ B+S+k0, (A.12)

and

m(9)
x0 (Eu+(·, 0), S+(0))(w0) = −7 · 8

〈
S+B+C

(6)
+ B+S+k0, k0

〉
= −7 · 8

(
60φ′′′(x0)

2a20
2
√
β − σ2

)
< 0.

Case 3: dimEu+(x0, 0)∩S+(0) = 2. Now we have W1 = Eu+(x0, 0) = S+(0), and Y0 = S+X0.

At the outset, there is no restriction on the vector k0 = (a, b)>.

Case (i): φ(x0) = 0, φ′(x0) 6= 0. As in the proof of Lemma 4.2, we have C ′′+ 6= 0 and m
(k)
x0 = 0

for k = 1, 2. It can be shown that now h1, h2 ∈ ker(Y0−S+X0) are arbitrary, and the third

order form is given by (A.7). so that n−(m
(3)
x0 ) = 1. Next, using W4 = kerm

(3)
x0 = span{s1},

one finds that h3 is free provided X0h0 = k0 ∈ kerC ′′+, i.e. k0 = (a0, 0)>, in which case

m
(4)
x0 = 0. For the fifth order form, with k0 = (a, 0)>, one finds that h4 is free provided h1

satisfies

C ′′+X0h1 = −3

4
C ′′+B+S+k0, (A.13)

in which case

m(5)
x0 (Eu+(·, 0), S+(0))(w0) = −3

4

〈
S+B+C

′′
+B+S+k0, k0

〉
= −3

4

(
6φ′(x0)

2a20
2
√
β − σ2

)
< 0, (A.14)

so that n−(m
(3)
x0 ) + n−(m

(5)
x0 ) = 2.

Case (ii): φ(x0) = φ′(x0) = 0, φ′′(x0) 6= 0. Now C ′′′+ = C ′′+ = C ′+ = 0, and m
(k)
x0 = 0 for

1 ≤ k ≤ 4. With Wk = W1 = Eu+(x0, 0) = S+(0) for 1 ≤ k ≤ 5, we find that m
(5)
x0 is given by

(A.8), thus n−(m
(5)
x0 ) = 1. Next, using W6 = kerm

(5)
x0 = span{s1}, one finds that h5 is free

provided X0h0 = k0 ∈ kerC
(4)
+ , i.e. k0 = (a0, 0)>, in which case m

(6)
x0 = 0. For the seventh

order form, with k0 = (a, 0)>, one finds that h6 is free provided h1 satisfies

C
(4)
+ X0h1 = −5

6
C

(4)
+ B+S+k0, (A.15)
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in which case

m(7)
x0 (Eu+(·, 0), S+(0))(w0) = −5

6

〈
S+B+C

(4)
+ B+S+k0, k0

〉
= −5

6

(
18φ′′(x0)

2a20
2
√
β − σ2

)
< 0,

(A.16)

so that n−(m
(5)
x0 ) + n−(m

(7)
x0 ) = 2.

Case (iii): φ(x0) = φ′(x0) = φ′′(x0) = 0, φ′′′(x0) 6= 0. Now C
(i)
+ = 0 for 1 ≤ i ≤ 5, and

m
(k)
x0 = 0 for 1 ≤ k ≤ 6. With Wk = W1 = Eu+(x0, 0) = S+(0) for 1 ≤ k ≤ 7, we find that

m
(7)
x0 is given by (A.9), thus n−(m

(7)
x0 ) = 1. Next, using W8 = kerm

(7)
x0 = span{s1}, one finds

that h7 is free provided X0h0 = k0 ∈ kerC
(6)
+ , i.e. k0 = (a0, 0)>, in which case m

(8)
x0 = 0.

For the ninth order form, with k0 = (a, 0)>, one finds that h8 is free provided h1 satisfies

C
(6)
+ X0h1 = −7

8
C

(6)
+ B+S+k0, (A.17)

in which case

m(9)
x0 (Eu+(·, 0),S+(0))(w0) = −7

8

〈
S+B+C

(6)
+ B+S+k0, k0

〉
= −7

8

(
60φ′′′(x0)

2a20
2
√
β − σ2

)
< 0,

(A.18)

so that n−(m
(7)
x0 ) + n−(m

(9)
x0 ) = 2.
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