A MIXED FINITE ELEMENT METHOD FOR A CLASS OF FOURTH-ORDER
STOCHASTIC EVOLUTION EQUATIONS WITH MULTIPLICATIVE NOISE
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ABSTRACT. We develop a fully discrete, semi-implicit mixed finite element method for approximat-
ing solutions to a class of fourth-order stochastic partial differential equations (SPDEs) with non-
globally Lipschitz and non-monotone nonlinearities, perturbed by spatially smooth multiplicative
Gaussian noise. The proposed scheme is applicable to a range of physically relevant nonlinear mod-
els, including the stochastic Landau—Lifshitz—Baryakhtar (sLLBar) equation, the stochastic convec-
tive Cahn—Hilliard equation with mass source, and the stochastic regularised Landau-Lifshitz—Bloch
(sLLB) equation, among others. To overcome the difficulties posed by the interplay between the
nonlinearities and the stochastic forcing, we adopt a ‘truncate-then-discretise’ strategy: the non-
linear term is first truncated before discretising the resulting modified problem. We show that the
strong solution to the truncated problem converges in probability to that of the original problem.
A fully discrete numerical scheme is then proposed for the truncated system, and we establish both
convergence in probability and strong convergence (with quantitative rates) for the two fields used
in the mixed formulation.
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1. INTRODUCTION
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Motivated by physical applications, we consider the following fourth-order system of nonlinear
SPDEs with non-monotone nonlinearities, perturbed by a spatially smooth multiplicative Gaussian

noise:

du = (MH — MAH —yu x H + S(u)) dt

+ G(u)dW (t) for (t,z) € (0,T) x 2,
H = Au+ f(u) for (t,x) € (0,T) x 2,
u(0,x) = up(x) for x € 2,
ou o0H
%—O, %—0 for (t,m)E(O,T)Xa.@,
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where 2 C R?, d < 3, is a bounded regular domain, and u : Q x [0,T] x 2 — R3 is a vector-
valued random variable. Here, W is a real-valued Wiener process on a filtered probability space
(Q, F, P, {Fi}+>0) with respect to the usual filtration, and G(u) is a Lipschitz function of u satisfying
certain assumptions (details are elaborated in Section 2.2). The forcing term f(u) := kpu — k|u|?u
arises from the Ginzburg-Landau theory, which is the negative variational derivative of V' (u) :=
w(|ul* — )2 /4, a double-well potential function. Define

S(u) = M(u) +C(u),

where M(u) is a mass source term with at most quadratic growth and C(u) is a convective term
given by

Clu) :=p1(v-V)u+ fou x (v-V)u, (1.2)
where v is specified in (2.4). All numerical coefficients are non-negative.

The problem (1.1) describes various problems in physics. When Aj, Ao, and ~ are positive,
problem (1.1) is the stochastic Landau—Lifshitz—Baryakhtar (sLLBar) system with spin current [23,

, 13], which can be seen as a Cahn—Hilliard-type regularisation of the stochastic Landau—Lifshitz—
Bloch (sLLB) equation in micromagnetics [7, 18, 31, 39]. When v = 0, (1.1) is the stochastic bi-flux
reaction-diffusion system [5] if 52 = 0, a stochastic population growth/dispersal model with long-
range effects [12] if 81 = [2 = 0, the Cahn-Hilliard-Cook (CHC) equation [29] if A\ = 51 =
M(u) = 0 (and the noise is additive), the stochastic convective Cahn—Hilliard equation with mass
source (sCHm) [36, 32] if Ay = B2 = 0, and the stochastic convective Allen—Cahn/Cahn—Hilliard
(sAC/CH) equation [1] if 82 = 0.

The development of numerical methods for physically relevant SPDEs with non-globally Lipschitz
and non-monotone nonlinearities perturbed by multiplicative noise is an active area of research (see
e.g. [0, 15, 26, 27] and many others). As (1.1) is a fourth-order equation, a conforming finite element
method to solve the equation directly would require C'-elements, which can be computationally
costly. Numerically treating the problem in mixed form allows us to work with C°-conforming
finite elements and use the mixed finite element method (see (3.1)), at the expense of introducing
an auxiliary unknown and performing a more delicate analysis. To the best of our knowledge, no
numerical scheme has been proposed for the problem (1.1) in its generality, not even for the sLLBar
equation (with or without spin current), the sCHm equation, or the SAC/CH equation.

On a related note, several numerical schemes have been proposed in the literature for the CHC
equation with additive noise, including a C'-conforming semi-discrete scheme [11], a fully implicit
scheme [20], and a fully explicit scheme combined with spectral Galerkin method [9] (see also [19]
for gradient-type noise, where strong convergence of an implicit scheme in H~! is shown). Note
that even in this setting (v = f2 = 0), numerical schemes of implicit/explicit-type proposed here
have not been analysed before. Furthermore, adding a mass source and a convective/precession
term in (1.1) causes a nontrivial difficulty in the analysis due to the non-conservative mass and the
loss of gradient flow structure, which is already encountered even in the deterministic case [30, 38].
On the other hand, setting Ao = 0 in (1.1) gives the sLLB equation. A C'-conforming finite element
scheme for a regularised version of the sLLB equation (which is simpler than our problem (1.1))
is proposed in [22]. As we can consider (1.1) to be a physically relevant regularisation of sLLB,
our scheme provides a more practical method to approximate the solution to sLLB by taking Ay
sufficiently small (in light of the convergence result for sLLBar to sLLB [23, Section 8]).

Regarding the error analysis, we describe here some difficulties at the discrete level that need
to be overcome. To this end, let A denote the Neumann Laplacian, A, the discrete Laplacian,
and ITj;, the orthogonal projection onto some finite element space V. Firstly, loosely speaking, the
mixed finite element method aims to approximate u and H simultaneously, using finite element
functions which belong to H! (but not H?). This already makes the analysis of the mixed finite
element scheme more challenging than its C'-conforming counterpart, even in the deterministic
case. Furthermore, the presence of the finite element projection II; in front of the nonlinearities
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present in (1.1) destroys some dissipativity properties of the continuous problem. For instance,
while there exists a C' > 0 such that for any sufficiently regular function v,

—(f(v),v) > =C, and —(Vf(v),Vv) > =C |V,
we notice that for v; € Vp,
— (VI f(vp), Vog) # —C | Vo[- -

As such, moment bounds for |lup|l; 2 and |[Vuy|l;2, where wy, is the finite element approximation
of u, are difficult to attain.

Similar difficulties are encountered in [20] and [19] for a simpler model. In their case, however,
these issues could be overcome by exploiting the fact that the (scalar-valued) Cahn-Hilliard—Cook
equation is the H~!-gradient flow of a Lyapunov functional together with the mass conservation
property to derive a moment bound for the H~! norm of the finite element solution. This bound
could then be bootstrapped and used to derive moment bounds in stronger norms and strong
convergence of the scheme in H~! or L? norms. However, it is not clear how to adapt such
arguments to our case since (1.1) is not a gradient flow in the presence of the cross product term,
the forcing term f(w), and the convective term C(u). Furthermore, these nonlinearities are non-
monotone, thus the general results from [25, 34] do not apply and the analysis needs to proceed
differently here. We also remark that the nonlinear term A f(w) is absent in the regularised sLLB
model considered in [22] and C'-elements are used there, thus the complications mentioned in the
previous and this paragraphs do not appear in the aforementioned paper.

We outline the approach taken in this paper as follows. To overcome the difficulties mentioned
before, while still using C%-conforming elements, we adopt the idea from [37] in the deterministic
case by first truncating the potential function so as to have at most quadratic growth at infinity.
Such truncation is both physically reasonable and a common practice [3, 13, 16, 28, 12]. In doing
so, the forcing function f is approximated by a globally Lipschitz C2?-smooth function fzr. We also
truncate the mass source [32]. We show that the strong solution to the problem with truncated
potential converges in probability to that of (1.1) as the truncation parameter R 1 co. Note that
even after these modifications, the problem (1.1) is still a system of SPDEs with non-monotone and
non-globally Lipschitz nonlinearities due to the cross product term uw x H and the non-variational
term C(u), thus the analysis is not straightforward.

A mixed finite element method is proposed to solve the truncated problem. In the absence
of cross product terms (the case of sSCHm or sAC/CH equations), our fully discrete scheme is of
IMEX-type. Error analysis based on the variational approach to SPDEs is then performed for this
scheme, where convergence in probability and strong convergence with a rate are proven. This is
achieved by establishing stability estimates in strong norms and showing error estimates localised
to a sample space with large probability, following the approach in [1, 10]. The main results are
stated in Theorem 3.7, Theorem 3.8, and Theorem 3.9.

2. PRELIMINARIES

2.1. Notations. We begin by defining some notations used in this paper. Let Z be a convex
Lipschitz domain or a domain with C?-smooth boundary. The function space LP := LP(2;R?)
denotes the usual space of p-th integrable functions defined on 2 and taking values in R3, and
WHEP .= WkP(2;R3) denotes the usual Sobolev space of functions on 2 C R? taking values in R3.
We write H¥ := W¥*2. The partial derivative 0/0x; will be written by d; for short. The partial
derivative of f with respect to time ¢ will be denoted by d;. The operator A denotes the Neumann
Laplacian acting on R3-valued functions with domain

ov

._ 2, OV _
D(A).—{veH . Oon(?@}.
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If X is a Banach space, LP(0,7; X) and W"P(0,T; X) denote respectively the usual Lebesgue
and Sobolev spaces of functions on (0,7") taking values in X. The space C(]0,T]; X) denotes the
space of continuous functions on [0, 7] taking values in X. The space LP(€2; X) denotes the space
of X-valued random variable with finite p-th moment, where (£, F,P) is a probability space.

Throughout this paper, we denote the scalar product in a Hilbert space H by (-,-)y and its
corresponding norm by || - ||zz. The expectation of a random variable Y will be denoted by E[Y].
We will not distinguish between the scalar product of L2 vector-valued functions taking values in
R3 and the scalar product of L.? matrix-valued functions taking values in R3*3, and denote them
by <'7 >

In various estimates, the constant C' in the estimate denotes a generic constant which takes
different values at different occurrences. If the dependence of C' on some variables, e.g. R and T,
is highlighted, we will write Cr 7.

2.2. Assumptions. Let pop € C?(R3) be a C%-smooth bump function whose support lies in the
closed ball Byr(0), such that

1, ifle] <R
= 2.1
Pr(®) {0, if || > 2R. 1)
The functions fr : R® — R3 and Mp : R? — R3 are defined by
fr(u) == pr(u)f(u), (2.2)
MEg(u) = pr(uw)M(u), (2.3)

For equation (1.1), we set A\ = Ao = k = u = 1 for simplicity. We further assume the following:

(1) The map G : R? — R3 is Lipschitz continuous with Lipschitz constant C. Moreover, there
exists a constant C' > 0 such that

IVG(v) = VG(w)||» < C||Vv = Vwll., Vo,weH,
1G) |l < C(1+ |0l ), Vo€ H.
(2) The spin current vector field v € L (RT;L>*(2;R?)) is given. For simplicity, set
H’/HLOO(R-F;]LOO(@;Rd)) =1 (2.4)

We remark that our results are also valid for noise of the form G(u) dW, where W is an H?-valued
Q-Wiener process of the form W (t) = > 72, \/qeerWi(t) and {W}} is a family of real-valued
independent Brownian motions. Here, {e;} is an orthonormal basis of H? such that Qe = qirex
and Z]Oil qj < oo. In this case, we assume G : H? — £(H?) is Lipschitz continuous with sublinear
growth. The assumptions here cover the case where G(u) is the identity operator (additive noise)
or the noise term given in [23] for the sLLBar equation. We consider just a single real-valued
Brownian motion in this paper for simplicity of presentation.

2.3. Existence, uniqueness, and regularity of solution. The existence, uniqueness, and reg-
ularity of the (probabilistically and analytically) strong solution to the problem (1.1) are studied
in [23]. We summarise the relevant results here. First, define a self-adjoint operator

A:=A? - A, with D(A) = D(A?).

The following theorem is shown in [23].

Theorem 2.1. Let ug € D(A%) and T > 0 be given. Let 8 € [1,1) and a € (0,1 — 3). There
exists a unique solution w of the problem (1.1) with regularity

u € LP(Q;C*(0,T;D(A?))) N LP(Q; L2(0, T; D(A))).
for any p > 1.
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Consider now the problem (1.1) with truncated nonlinearities, where we set all numerical coeffi-
cients to be 1; namely for each R > 0, (ur, H ) satisfies

dup=(Hp— AHp —ugr x Hg + P(ug)) dt + G(ug)dW(t) for (t,x) € (0,T) x 2, (2.5a)

Hpr = Augr + fr(ug) for (t,x) € (0,T) x 2, (2.5b)
ur(0,x) = uo(x) for x € 92, (2.5¢)
8uR N 8HR .
87 =V, on =0 for (t7$) € (O,T) X 89, (25d)
i.e. the problem (1.1) with f(w) replaced by fr(ug), and
P(ug) := C(ugr) + Mp(ug). (2.6)

A variational formulation for the problem (2.5) can be written as follows: For every ¢ € [0, 7]
and P-a.s., (ur, HR) solves

(ur(t), x) = {uo, x) + / (Hp(s), x) ds + / (VH p(s), x) ds

- / (ur(s) x H(s),x) ds + / (P(un(s)),x) ds .

+ / (G(ur(s)). x) AW (s),
(Hpg(t), ) = — (Vur(t), Vo) + (fr(ur(t)), @) ,

for all x, ¢ € H'. This variational formulation will be used for the analysis of the numerical method
proposed in Section 3. By similar argument as in [23, Theorem 2.5], we have the following result.
Proposition 2.2. Let ug € D(A%) and T > 0 be given. Let 8 € [1,1) and o € (0,1 — j3). For
each R > 0, there exists a unique pathwise solution ug of the problem (2.5) with regularity

up € LP(Q;C*(0,T;D(A?))) N LP(Q; L*(0, T; D(A))).
for any p > 1.

Proposition 2.3. Let ur and u be the solution to the problems (1.1) and (2.5), respectively. Then
upr(t) — u(t) a.s. on [0,7] as R T co. Furthermore, for any ¢ > 0 and p > 1,

P | sup [[up(t) —u(l)|ly >c| < CpR77,
t€[0,T]
where C), is a constant depending on 7', p, and 9.
Proof. For each R > 0, let
TR =inf{t > 0: ||ur(t)|g > R} AT,
op:=inf{t >0 ||u(t)||g > R} AT.

Then ur(t) = u(t) a.s. for all t < 7, and 75 T T as R 1 oo, which implies ug(t) — u(t) a.s. on
[0,T] as R 1 oo. Furthermore, for any € > 0,

P| sup Jur(t) - u(t)|y >
te[0,7)

+]P>[TR<T]

<P [ sup ||[ur(t) —w(t)| g > ¢
te[0,7r]

=P{rr <T}N{og =T} +P[{rr < T} {or < T}

< o [l
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as required. ]

As such, we can approximate the solution to the problem (1.1) using (2.5) by taking R sufficiently
large. From this point onwards, we will focus on the numerical approximation of (2.5) and write u
in place of up.

2.4. Finite element approximation. Let 7}, be a quasi-uniform triangulation of 2 C R? with
maximal mesh-size h, and let V;, C WH* be the Lagrange finite element space

Vi :={¢p € C(Z;R3) : |k € P1(K;R?), VK € Tp,},

where P1(K;R3) denotes the space of linear polynomials on K taking values in R3. Let T > 0 be
fixed and k be the time-step size. Furthermore, let u} and H}, respectively, be the approximation
in Vy, of ur(t) and Hg(t) at time t = ¢, := nk, where n =0,1,2,...,N and N = |T/k].

We begin by defining several operators which will be used in the analysis. Firstly, there exists
an orthogonal projection operator IIj, : L? — V), such that

(v —v,x) =0, Vx €V (2.8)
The operator IIj, is stable [3, 14, 17] in LP and WP for p € (1,00): there exists a constant C
independent of v such that
IMyolly, < Cllolly,, Yo el (2.9)
VI, < CVYll,, Yve W (2.10)
Moreover, it has the following approximation property:
o = vl + b [V (0 = D) | < CB ole, (2.11)

We mainly use (2.9), (2.10), and (2.11) for p = 2.
Secondly, define the Ritz projection Ry, : H' — V), by

(VRyv — Vo, Vx) =0, Vx €V, (2.12)

such that (Rpv — v,1) = 0. The stability and approximation properties of the Ritz projection [33,
| are assumed to hold. In particular, for p € (1, c0),

o = Ruwll, + B IV (0 = Riv)llp < CH2 0]l (2.13)
Finally, the discrete Laplacian operator Ay : Vy — Vy, is defined by
(Apvp, x) = — (Vop, Vx), Yo, x € V. (2.14)
Consequently, for any p,q € [1,00] such that 1/p+ 1/q = 1, by Hélder’s inequality we have
IVonlZ: < lonllr 11 Akonle (2.15)
JAwonlZ: < [Vonlln IV Awonl, (2.16)

2.5. Identities and inequalities. Some identities and inequalities that are frequently used in the
analysis are collected in this section. Recall that f(v) = v — |v|*v, where v : 2 — R3. For g and
fr defined in (2.1) and (2.2), respectively, we have the following identities:

Vf(v) = Vv - 2v(v - Vo) — |[v|*Vo, (2.17)
Af(v) = Av —2|Vo[*v — 2(v - Av)v — 4V (v- Vo) — |v|*Aw, (2.18)
Vir(w) = V[pr®)] (f(©) " +er©)V[f(v)], (2.19)
Afr(v) = pr(v)A[f(v)] + f(v)A[ r()] +2V[f(0)] - V[er@)] (2.20)

Apr(v) = (Dpr(v) Av+z (00) ' (D*pr(v)) (B0). (2.21)
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where Dyg(v) and D%pg(v) denotes, respectively, the Jacobian and the Hessian of ¢ evaluated
at v.

Lemma 2.4. Let 2 C R? be an open bounded domain with Lipschitz boundary and € > 0 be
given. Then there exists a positive constant C such that the following inequalities hold:

(i) For any v € H' and p € (2,6),

vl < Cellvllz + e Volie. (2.22)
(ii) For any v, w € H®, where s > d/2,
[0 © wllge < Cflvllgs [lwllg. , (2.23)

Here ® denotes either the dot product or cross product.
(iii) Let 2 be a convex polygonal or polyhedral domain with globally quasi-uniform triangula-
tion. Let Ay, be the discrete Laplacian operator defined in (2.14). For any v, € Vj,

1_d d d
[vallpee < Cllvallp.* (Ilvhllﬁz + HAhvh!]ﬁ2> : (2.24)
[Vopllis < Cl|Apvnpe - (2.25)

Proof. Inequality (2.22) follows from the Gagliardo—Nirenberg inequalities. Inequality (2.23) is
shown in [1], Lemma 2.2]. The estimates (2.24) and (2.25) are shown in [24, Appendix A]). O

Lemma 2.5. Let ¢ and fr be the maps defined in (2.1) and (2.2), respectively. Let p,q € [1, c0].
Then there exists a positive constant C'r, depending on R, such that the following inequalities hold:

(1) For any v : 2 — R3,
IV fa(0)lls < Cr [ Vo]l . (2.26)
|Afr() s < Cr (IIV0lE2 + A0l ) - (2.27)
(2) Suppose that 1/p+1/q=1/2. For any v : 2 — R? and w : 2 — R3,
IV fa(v) = Virw)l: < Cr (1+ ]~ ) Vo — Vs
+Cr (14 [0l ) 90l 0 = wlly, (2.28)
Proof. Firstly, by (2.17) and (2.19) it is clear that we have
IV Fr()] < [Der()| Vo] [f ()] + ler()] [v]* [Vo] < Cr[Vol,
which implies (2.26). Similarly, noting (2.18), (2.20), and (2.21) we have
AfR(@)] < |enr()] (|av] +6 Vo [o] + 3o |Av])
+ (ol + o) (IDer(v)| |Av] + d|Vof* |D2op(v)])
+ DR (v)| Vol (IVo] + 30 [Vo))
< Cr (|Vol +[A0])
which implies (2.27). Next, using (2.19) again, we have
VFr(®) = Vfr(w)] < [V [or(®) = orw)] | |f(©)] + |V [pr(w)]] [f(@) - f(w)]
+ lpr(v) = or(w)| [V[f(0)]] + ler()| [V [f(0) - fw)]|.  (2:29)
We now estimate each term on the right-hand side. Firstly,
[V [r(®) = er(w)]||£(v)] < [Der(w)]| [Vo = Vool |f(v)| + |Der(w) = Der(v)| [Vo] |f(v)
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< COn (1 + \UP) Vv — V| + Cr (1 + \0\3) Vol v — w].
Similarly, we have
\V[er(w)]]|f(v) = f(w)| < [Dpr(w)| [Vw — Vol | f(v) = f(w)] + [Dpr(w)||[Vo| |f(v) — f(w)|
< COn (1 + \v\?’) Vv — V| + O (1 + W) V| v — w),
and
pr(®) = er(w)| [V[f(©)]]| < Cr (1+]0) Vo] jo - w].
Finally, for the last term, we note that

Vf(v) - V(w) = (Vo — Vw) — 2(1}((’0 —w) - Vo) + (v — w)(w- Vo) + w(w - (Vo — Vw))>

- (((v —w) - (v+w))Vo + |w]* (Vo — Vw)) .
This implies
ler(w)| |V [f(v) = f(w)][ < Cr|Vo = V| + Cr (1 + |v]) [Vo] [v — w].
Thus, continuing from (2.29) we obtain
[V fr(v) = Vir@)] < Cp (1+]0]) [Vo = Vaw| + Cr (14 [o]*) Vo] o~ wl,
from which (2.28) follows by Hoélder’s inequality. O

Lemma 2.6. Let C be the map defined in (1.2) and v be given. For each € > 0, there exists a
positive constant C' such that for any v € H' and w € L,

@), 0)2 ] < C (14 w1 0122 + €[ TolE, (2.30)

[ (Cw),whia | £ C (14 W e(omn ) (1+ Il ) [0l + el Vo2, (2:31)

Now, let p,q,r € [1,00] be such that 1/p 4+ 1/q¢ + 1/r = 1. For each € > 0, there exists a positive
constant C' such that for any v € W4 N LP and w € L,

[ C@)w)iz | < C Wl iome (L4 [0IE, ) IV0]2, + e ], (2.32)

Proof. Inequalities (2.30) and (2.31) follow directly from Young’s inequality and the fact that Mg
is Lipschitz. To show (2.32), we apply Holder’s and Young’s inequalities to obtain
[ (C@) W) | < Clip g IVl [0l + [l g [0l V01 0],
2 2 2 2
< O gy (1 1012) 1912 + e ol

as required. This completes the proof of the lemma. O

3. A FULLY-DISCRETE MIXED FINITE ELEMENT METHOD

In this section, we propose a mixed finite element method for (1.1) with partially implicit Euler
time-stepping. We start with w9 = I u(0) € V). Let t, € [0,T], where n € {1,2,...,N}
and N = |T/k], given uZ_l € Vy,, we find F, -adapted and Vj, x Vj-valued random variables
{(uj, Hy)} satistying P-a.s.,

(upy —up ™ xn) = k(Hp, xu) + k(VHE, V) — ky (uf, < Hiy, x,) + k (C(up), xa)
+ k <MR(UZ_1)a Xh> + <G(U’Z_l)7 Xh>ZWn7 (31)

(HT, dn) = — (Vuy, Vo) + (frup '), )
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for all x},, @, € Vp,. Here, AW™ := W(t,,) — W(tn—1) ~ N(0,k). In particular, when v = 32 = 0,
this is a fully-discrete IMEX-type scheme for the sSCHm or the sAC/CH equations.

Lemma 3.1. There exists a sequence {(uy, H})} of V) x Vj-valued random variables which
solves (3.1).

Proof. Fix w € . We aim to use induction and a form of Brouwer’s fixed point theorem to show

the existence of a sequence {u}(w)}2_; solving (3.1). Suppose that u) (w), u} (w),. .., u}~ Y(w) are

given. Consider a continuous map gw Vi, — V}, defined by
Gl(v)=v — uzfl(w) — kApv — k:thR(uZ*l(w)) + szzv + kAL fR (uzfl(w))
+ kv X (Ahv + thR(uZ_l(w))) — kII,C(v) — thMR(uZ_l(w))
- HhG(uZ_l(w))ZW"(w).
For all v € V,, by Young’s inequality, Lipschitz continuity of G, fr, and Mg, and (2.26) we have

1 —
(G50),0) > 5 ol — 5 o @2+ K IV01s + kAl — b (T fruf (@), o)
—k<vnth< w >> v) =k {(1- V)v,v) = k (Mg(v),v)
—<G NAW™(w), v)
_ n— k
> 2ol - 5 Huz 1<w>HL2 +E|VolEs + K ArvllEs — 20k [up @)]IF - 5 0]
_ Cgk k
o T @) — kAl — k9ol - 5 Ivllfs - Crkllv]:
_ S k
=206 [[uj ™ @)1 (AW @) = 5 102
1

= 5 (L= k= 20wk) lolZs — | (9Cwk + 8Ca (5 (@) [luf~ ()]
Now, suppose that k < (1 +2Cg)~!, and set 3 :=1—k —2Crk > 0. Let
Bui= {0 € Vi @l =487 An(w)},
where
Anlw) 1= 7 (90w +8Ca [BW" (@) ") luf~ (@) 22 < oo.

Then we have (G¥(v),v) > 0 for all v € B,(w). Brouwer’s fixed point theorem [21, Corollary
VI.1.1] implies the existence of u]/(w) such that G¥ (u}!(w)) = 0, thus also of Hj(w) = Apu}(w) +
Iy fr (uZ_l(w)). The F;,-measurability of the map uj : © — Vy, thus also of Hj, follows from
the same argument as in [2, Theorem 2.2]. O

We establish some stability estimates in the following lemmas.

Lemma 3.2. Let p € [1,00) be a natural number. Suppose that {(u}, H})} satisfies (3.1). There
exists a positive constant C' such that

ki n 4 2 2P —2
E |max ||uy, +E ZHuiL—uiL u
I<n L2 1.2 L2
< =
n 12 12 F112-2
2 k[l ] ) ]

Jj=1
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op—1 op—1

n 12
+E kZHAhu{Z y
j=1

n
12
J
+E | (£ |V,
j=1
where C' depends on T, p, R, and ||ug||; 2, but is independent of n, h, and k.
Proof. We begin the proof by showing the inequality for p = 1. Setting x;, = u}, we have

1 1
(e = o 2) + k= w2 = b CER ) + b (T V) + () )
+ E(Mp(ul ™), up) + (Gu) ™), up) AW™.

(3.3)
Successively taking ¢, = u} and ¢, = —Apu}, then substituting the results to (3.3), we obtain
5 (s = o122 ) + 5 k= ;2 + R Vg2 + £
9 RIlL2 (o up —up | uh”]L2 + k|l huh”]L2
=k (fr(up "), uj) — <fR( up ™), Apup) + k (C(up), up) + k (Mp(up "), up)
+ (G} ), uf DY AW + (G(uf ), up —u) Yy AW
= Ji+Jot -+ e (34)

We will estimate each term on the last line. By Lipschitz continuity of fr, G, and Mg, (2.32), and
Young’s inequality we have

< Cok g 2+ 5 g2
ol < Ok [~ 22 + & Anuf
51+ 17 < Ok a2 + = w2+ 5 IVl
We aim to estimate the moments of the last two terms. To this end, note that by Young’s inequality,
ol < 7k — a7+ G| (B (35)

By the tower property of the conditional expectation and the independence of the Wiener increment,
we infer that

%%EWG ).

AW’ )ft“H

swil| =3 el Joe L,
=3 et |, =m0,

< Ckzn:E [1+ Hu{jlu;] (3.6)
j=1

Noting the assumptions on G, we also have by the Burkholder—Davis—Gundy inequality,

A , . n 2 2
E |max <G(ufl_1),uf;1> AW7| < CE kZ (1 + Hui_l"U) Hui_ll >
j=1
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Jj<n L2

1 n

2\ 2 2

<CE 1113@{(1—%”11?1 H]L2 kE HuiZ ‘
=1

(3.7)

I<n L2

<C+ E[max

n 2
-1
uhH 2] +CE Zk”ui ]
i=1

As such, summing (3.4) over j € {1,2,...,l}, taking the maximum over [, applying the expected
value, and absorbing the second term in (3.7) to the right-hand side, we infer from (3.5), (3.6),
and (3.7) that

+E |k (IVuilizs + I anugii:)
=1

2
2| |’

where C' depends on T and R. The first inequality then follows by the discrete Gronwall lemma.
Next, we aim to prove the second inequality. We will show the case p = 2 in detail. Multiply-
ing (3.4) by |[up|?,, we obtain

(R (A o B R A A
+ Rl Il + & 18l [l
= e (). a2 — ). A o + ke (CCu).uf) 2
R (M), ) o[22+ (Gl AW, ™) a2
(G AW uf ) 22
=L+1+- -+ I (3.8)

From the corresponding estimates for J; to Jy in (3.4), the first four terms can be estimated as:

E {max

I<n

]LQ

Ik g2
wh |+ B D [~ i
j=1

n
<Jdll 40 (18308 [%qugl‘
<

k 1112 2 4
1L < = |Jup — wp s luhlife + Ck llupll;s

- 16
2 2 4 14
Bl < g w2 a2 + CF gl + CE [l 1
_1112 2 4
sl + Ha] < 16 IVuilIfe llupllfe + < 16 ||uh —up | il + Ok lupllpe -
For the term I5, by Young’s inequality we have
2
15 = (Gl AW ) [ (g2 = g2 ) + g5
1

<% (”’“h”w )+ g WP (Gl AW [ (39)
Similarly, for the term Ig we infer that
Io < C ™ [[0a TAW™ P ufllf + o e A A
<1 (IIUZHLQ — [Jup~ 1HL2) + O Jluyra (AW 4+ [AW™?)

1
+ 7 ek = w7 g (3.10)



12 BENIAMIN GOLDYS, AGUS L. SOENJAYA, AND THANH TRAN

Altogether, for sufficiently small k, we obtain

1 1 2 1
" HU’ZH]?} - Hun_lu]?} + Y ||UZH]I%2 - Huh 1”]1? + = HUZ - uz_luiz HUZHJ%P
4
k
HvuhH]L? luhlEe + 5 HAhuhH]L? |17
< Ck|[ul|lis + Ck |up™ IHLQ +C ||up™ IHM (JAW™* + [AW™?)
+ (Glup AW, Y fup 7, (3.11)
We need to estimate the moment of the right-hand side of the last inequality. To this end, note

that by the Burkholder-Davis—Gundy inequality, similarly to (3.7) we have

2

n . 2 ) 6
Jj—1 Jj—1
o (5 (e )

E |max <G(uf;1)ZWj,u{;1> ‘ ugfl‘

1 LI i PE
<ol ] ] vz S

(3712)

With this estimate, we can continue from (3.11). Summing (3.11) over j € {1,2,...,1}, taking the
maximum over [, applying the expected value as before, we deduce the required inequality for p = 2
by the discrete Gronwall lemma, except for the last two terms on the left-hand side. For general
p > 2, the inductive step is as follows: once we obtain inequality of the form

1 _ _ -1\2 1

o5 (lei2s = [l ) + W (2 = a5 )"+ o Nl = g™ [ a2
+ k([ Vup|IE [upllFs + & (| Apup | 2 uglIfs

< Ch g1 + Ok Jup ™[ + C [|ug= 75 (1AW + AW )

+ (G u AW, =) [Jup =72 (3.13)

we multiply it by Hu’,}HiI; Note that the above inequality for p = 2 is (3.11). In this manner, we
obtain

1 +1 1 2 1
et (RIEE = 1) + g (1o = o 28) o o — o 2 ol
+ kIVuflE lupllfs” +E 1AL, Juplfe 2

< Ck % + Ck w122 + ¢ [|un% (|AW"|2‘° + |ZW”\2‘°‘1) [R5l

optl_9

+<G(unfl)zwn’ n— 1>H n— IH
= Ck g + Ok w2 + S+ Ss.

_qqp2P
For the term S, we add and subtract HuZ !

HLQ, and apply Young’s inequality to obtain

1 —1\ 2 1/ _
$1< g (a2 = [ 2 ) "+ O g 2 (1w dwe).
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and thus after rearranging, we obtain inequality of the form (3.13) with p replaced by p + 1. Now,
for the term Sy, we can estimate its moment by the same argument as in (3.12):

+1_
E |max <G(uj_1)ZWj uj_1>Huj_1 v
I<n 4 h ’ he e
1
" . 4 . opt2_4y
7j—1 7j—1
<cm 132 (1 o) ot
j=1

op+1 9p+1

1 I
< C’—l—WE [max uy,

- I<n

L2 L2

n
] +CE | Yk |uf !
j=1
Summing (3.13) over j € {1,2,...,1}, taking the maximum over [ and the expected value, we
obtain (3.2) for general p, except for the last two terms on the left-hand side. In particular, we
have shown for any ¢ > 1,

L l1e
E | max uhH <, (3.14)
I<n L2
Finally, we sum (3.4) over j € {1,2,...,n} and raise it to the 2°~1-th power. Noting (3.5) and
applying similar argument as before yield
or—1 or—1
n 2 n 2
o . .
lapZa+ (032 |wut]| |+ (R0 ]|awud]|
j=1 j=1
or—1 or—1 or—1
n 2 n - 2 n 1o i
-1 1 — . _ _ _
<so(edu L] I |ewhhEwd| ) (Gl A
j=1 j=1 j=1
=: R+ Ry + Rs. (3.15)

The expected value of R; is clearly bounded by (3.14). For Ry, we have by Jensen’s inequality,
(3.14), and the same argument as in (3.6),

1 R 12"
E[Ry] < Cn?" %% Z;IE [1+ Hui HLQ] <C.
j:

For the term Rj3, by the Burkholder—-Davis—Gundy and the Jensen inequalities, noting the assump-
tion on (G, we obtain

] -
- i~11% |1
E[Ry] < C,E ;kHGwh oa e,
- —2
2Pt n 2 ”
J— J—
< O P (k3 (1)
J:
2p—1
<1k 1 o m | (ST (14 e
< 78 [ o™ | + > ()

Jj=1
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1 2P 2P
<-E [max u 1” } +CT + CrE [max J 1” } <C.
4 | j<n L2 i<n L2
This completes the proof of inequality (3.2). O

Lemma 3.3. Suppose that {(u}, H})} satisfies (3.1). There exists a positive constant C' such that

2

2 n . . n 112
l J Jj—1 J
uhHHl] e ZHuh_uh HHl e ZkHHh H!
j=1 Jj=1

where C' depends on T', R, and ||ug||g:, but is independent of n, h, and k.

<C

)

E |max
I<n

Proof. We set x;, = H} and ¢, = uj — uz_l in (3.1) to obtain
(uh — ™ HJ) = k| HRIIE2 + kIVHEE: + k (C(uft), HR) + k (Mr(up "), H)

+(G(up™"), H}) AW™, (3.16)
1 _ 1 " e
(Hy oy —upt) = =5 (Ve e = [V~ [52) = 5 [ Vui = Va7
+ (frlup ), uf —up ). (3.17)

Next, putting ¢, = HhG(uzfl) yields
(Gup ), HY)Y AW = (VIL,G(up "), Vu Y AW™ — (VIL,G(u} ™), Vuj — Vul ')y AW”
(G, Frlup ™)) AW, (3.18)
Furthermore, taking x; = thR(uzfl) gives
(fr(wy ™) uh —up™') =k (Hy, fr(uy ™)) + & <VH”, VI fr(uy )
— k(up < Hi Iy fr(ul ™)) + k(C(upt), M fr(u) ™))
+ k (Mpg(up~ )ﬂth(uh D)+ (Glup™ ), M fr(up ™)) AW™. (3.19)

Subtracting (3.17) from (3.16), then adding the resulting expression with (3.18) and (3.19), we
obtain

5 (IVails = [V 2,) + 5 Vi - Vup- Wlm I IZ> + & IVETEI
= —k(C(up), H}) — k (Mp(u)~ ),H”>+k<H )+ k(VHY, VI, fr(up ™))

—k (uf x H My fr(u) ™)) + k(C(u)), Hj, fr(u >+k<MR( N, fr(u)™))

— (VILG™Y), Vul Y AW™ — (VIL,G (ul~ ),Vuh — Vaup ') AW"
=hL+L+ -+ 1y (3.20)

We need to bound each term on the last line. For the first two terms, by (2.32), the Gagliardo—
Nirenberg and Young inequalities, it is clear that

]+ 1] < Ok a2, + Ok (14 g I2) 9012+ & [ BRIZ: + 5 I VHRIZ. (3:21)
For the terms I3 and I, by the assumptions on fr, Young’s 1nequahty and (2 26) we have
112 112
| Is| + |I4] < Crk ||Jup || 2 + Crk || Vup ™| + ||H ||L2+ IVH}|? . (3.22)

For the term [I5, by Young’s inequality, the Sobolev embeddmg H! — L4, and the stability of 11y,
we infer

15| < Crk [l s || H [l [T fr (g, )]
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< Okl [ 3+ 5 BRI + 5 VRIS (3.23)
For the terms I and I7, we again apply (2.32) and the L1psch1tz continuity of Mg to obtain
[Is| + 1] < Okl |7 + Ok (14 [ |1 ) 22 + Ch [ Vg
< CkJup~ |72+ Ch (1 w72 + | Anup = [[22) I 2 + CR Vg2, (3.24)
where in the last step we also used (2.24) and Young’s inequality. For the term Iy, we have
aw

1
o] < 7 1IVuf, = a2 + 4| VG~ |7

< 3 IVap = Vs + O g (B (3.25)
where in the last step we used the H'-stability of the L2-projection [3] and the definition of G. The
term Ig in (3.20) remains as is for now.

We now collect all the estimates (3.21), (3.22), (3.23), (3.24), (3.25), and continue from (3.20),
taking care to absorb appropriate terms to the left-hand side. Summing over j € {1,2,...,(},
taking the maximum over [, and applying the expected value, we obtain

n . 2 n 12
—1
[max V'u,hH ]+IE ]§:1:“Vu§1—Vu{l || +E j}:l:kHH{L .

9 2 " 112 112
< [}l + O | uf | + > (1t ) [t

2 2

]L2

2 j
o) [l

n 12 . n 12 ~
j j—1 j—1 J—1
+CE ;kHuh‘M ul Hm +CE ;k(l-ﬁ-”uh HLQJFHAhuh ‘

+E maxz< uh Ahuh >AW” +CE ZHuh ‘
=1

= J; +J2+---+J7. (3.26)

It remains to estimate the last five terms on the right-hand side. Firstly, the term J3 is bounded
by (2.25) and Lemma 3.2. Next, we have

) (Sl )| < o om| (el

The term J5 can be similarly bounded. For the term Jg, by the Burkholder-Davis—Gundy inequality
and the H'-stability of IIj, we obtain

o |Aw|?

2

<C.

Jy < CE (I}lax

. n ) 2
E |max Y (Gu] ™), Apul, ) AW? | < CE kZ(l—i—Hu{le]m) |anug |
: —

D=
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L 2
<C+CE ZkHAhuifHLQ <C,
=1

where in the last step we used Lemma 3.2. Similarly for the last term, we infer from the indepen-
dence of the Wiener increment that

n
2
j—1
J<CE > k|l | <C
j=1
Substituting these estimates back into (3.26), we deduce the required inequality. O

In the following, we assume that 2 = 0 in (1.2). This estimate will be used only in Theorem 3.9.

Lemma 3.4. Suppose that f2 = 0 in (1.2) and let p € [1,00) be a natural number. There exists a
positive constant C' such that

s Sl il

where C' depends on T, R, and |[uo||g1, but is independent of n, h, and k.

or—1

2p—1
]E[max ul <C, (3.27)

I<n

n 12
+E kZHHi "
=1

Proof. As before, we prove the case p = 2 in detail. Similarly to the proof of Lemma 3.2, we
multiply (3.20) by ||[Vau,|[?2 to obtain

(19wt = v (9 = 9 22)) + 5 190k = Va2 1wl
+ k[ HRI: [Vup|fe + k| VHEZ ||vuh||]L2
= —k(C(uy), H}) HvuhHILQ —k (Mpg(uj, I IVuRllEs + K (HR, fr(up ™) [IVap g2
+k(VH}, VI fr(up ™)) [Vup|i - <UZ x Hipp, Ty fr(up ")) HvuhHL?
+k(C(up) ,thR(uh D IVuRllEs + & (Mp(wp™), T fr(uy ™) [|Vup|fz
—(VIL,G(u} ™), Vap Y AW™ | Vap|f2 — (VILG(ulb), Vay — Vul ) AW | Va7,
=L +1s+- -+ Iy (3.28)
Noting f2 = 0, we can estimate the first five terms following the corresponding bounds in (3.21) to
(3.24):
11| < Ck ug |22 [|Vuple + Ch (| Vuplz: T IIH ||]L2 IVupza,

L] < Ck [ ™| L2 + Ch |2 + C IIV’uhlle t16 IIH I Vg

15| < Ok [l [ + ||vfuh||m + ||H 12, Hwhup,
_1114
1] < Ok Ve~ [ + 25 IVufllds + 1o IVHRIE, HVuhup,
2 _
15| < Ck[uf 22 |Jug 1HL2 (Ivuiiz: + HAhumrm) T HR R V),

2 —1/2 2 2 - 4
Is] + 7] < Chlfup 2 [~ [ (I uilEe + 1 AnuilZe ) + Ck [l ™| + CRIVuglEs

where for the terms I5 and I we also used (2.15). The expected values of the terms Ig and Iy can
be estimated as (3.9), (3.10), and (3.12). Substituting these estimates into (3.28), summing, taking
the maximum and the expected value, and applying the results of Lemma 3.2 as done previously
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shows (3.27) for the first two terms. To establish the inequality for the last term, we sum (3.28)
over j € {1,2,...,n}, square the result, and follow the same argument as in (3.15). The general
case follows by induction as in the proof of Lemma 3.2. We omit further details for brevity. 0

To facilitate the proof of the error estimate, we decompose the error of the numerical method at
time t,, n =0,1,..., N, as:

u(tn) —up = (u(tn) — Rau(tn)) + (Rau(ty) — up) =: p" + 0", (3.29)
H(t,) — Hy = (H(t,) — R H (t,)) + (RpH(t,) — Hp) =:n" +£". (3.30)

As such by the definition of the Ritz projection (2.12),
(Vp",Vx) =(Vn",Vx;) =0, Vx € Vy. (3.31)

Furthermore, define a sequence of subsets of 2 which depend on x and m:
2 2 n)|2
= : < .
Qm {w € max [lu(t)|ge + max [H(b)]L, + max|lubllg < H} ) (3.32)

where x > 0 is to be specified. It is clear that for any x > 0 and m € N, we have ., D Qg m1-
Thus, for any time-discrete random variable v™,

m
max Ao, (v -0 ”2>]
2 " 2
max <]lm,m_1 o™ IE2 = Loy, [[0°]];2 + ZZ; (Lo s = Lo, ) H”ml}hz)]
1 — 2

1 1
> 5 max (Lo 0™ ) — Lo o) + 5 >k o,

E

1
=-E
2

v

e_ve—1’

2
vl - ”“HLQ] . (3.33)

We are now ready to prove an auxiliary error estimate. Similar to the assumptions in the
following proposition, a technical mesh constraint condition h = O(k) is also implicitly assumed
in [22].

Proposition 3.5. Let (u, H) be the solution of (2.7) with initial data uo € H?, and let (u}, H})
be the solution to (3.1). Let € ,, be as defined in (3.32). Let 8™ and £ be as defined in (3.29)
and (3.30), respectively. Assume that h = O(k). Then for n € {1,2,..., N}, we have

2 - 2 2 -
o 072 152 i (f ] e, )] < ).

where Cr 7 is a constant depending on R and 7', but is independent of h and k.

2
l
st

Proof. Subtracting (2.7) from (3.1), rewriting the indices, and noting (3.29) and (3.30), we have
for any xy,, ¢p, € Vh,

<9€_9Ll,xh>:_< f_p417Xh>+/tte <H(3)—Hﬁ,xh>ds+/t

£—1 -1

)ty <m0 s [ (e () - HE), X s

to—1 to—q

N /te <V . V(U(S) . Uﬁ)»Xh> ds + /W <(U(S) - Ué) X (v- V)ué’Xh> ds

to—1 te—1

ty

VH(s)— VHY, Vy;, ) ds
{ )
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+ /tZ <u(s) x (v - V)(u(s) - uﬁ),xh> ds + /te <MR(U(8)) - MR(Ui_1)7Xh> ds

te—1 te—1

+ / " {(Gluts) - Gl ) AW (s) (3:34)

(€' .¢1) == (n'dn) = (V6" + 0", V) + (Fr(ulte)) = faluf ™), 1) (3.35)

We now put x;, = 6 in (3.34) and ¢, = k6% in (3.35), then multiply the resulting equations
by Lo, , s where the set Q. , was defined in (3.32). We then sum the resulting expression over
e {1,2,...,m}, take the maximum over m < n, and apply the expectation value. Noting (3.29),
(3.30), (3.31), and (3.33), we obtain

2

-

1 5 1 —
3 s (1o 107182 | + 5 32 [t

0@ o 9@71 ‘

1 0 o1l g
< 3 10°2] -8 x>t (o 0 >]
+E r112<1>(§:]lgM 1/ <n€+€K+H(s)—H(tg),05>d8]
msn t@ 1
14
+E maxz 1o, , / <V£f + VH(s)— VH(ty), V05> ds]
te—1
- o .
—E mgxz 1o, , / <(pe + 6 + u(s) —u(ty)) x H(s), 9€> ds
_min —1 tl—l
- I .
~E m3XZ]1QK,€ / <u§; x (n' + &'+ H(s) — H(t))) 94>ds]
"= te-1
- o .,
+E mEJXZ]lQ’Ml/ <V.V(pf—|—95—|—u( ) — u(ty)) 0£> ds
_min _ tg,l
- o .
+E mgxz 1o, ., , / <(p£ + 60"+ u(s) —u(ty) x (v-V)ul, 05> ds]
_m_n - to_q
- o .
+E ngxZ]lQM_l / <u(s) x (v-V)(p' + 0" +u(s) — u(ty)) 05> d ]
_m_n — t@ 1
- o .,
+E mng]lQMl/ (Mi(u(s) — Mp(u ), 0) ds
"= te—1
- . .
+E [max ¥ 1o, / <G(u(s)) — Gl Y, 0f> dW(s)] : (3.36)
"= o te—1
and
kE maxill <££ 9€> = —kE maxi]l VOEHQ — kE maxi]l < ¢ 0€>
m<n ya Qpo—1 ) m<n ra Qro—1 L2 m<n ya Qe o1\

+ kE

max >t ( falu(t)) - fR<uf;—1>,of>] - (3.37)
- 4=1
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Next, we put ¢, = k€™ to obtain

[maxZ]lQM 1 s‘fH ] = —kE [maxi]lwl <n‘f,gf>] — kE [?nlg;(i]lgmel (v, ve")
=1 - =1

m<n m<n

+ kE

max Y Lo, , , (fr(ulte)) - falu) >£4>] (3.38)

- 4=1

Adding (3.36), (3.37), and (3.38), we have

1 2 RS
E {gnl‘g;c (]lm,m_l H9mHL2>] t3 ;E [ﬂm,el

0€ o 0571‘

2
L2

n 2 n 2
+ KE ;1%“ vo'| | +rE anme,l ¢ U]
< 1g )] - {gggzﬂme (o pf—l,aﬂ>]

_ . .
+E maxZ]lQMl/ <n€+€Z+H(s) —H(t£)70£> ds]
_min _ tg,l
- - . g
+E %‘235; 1o, /tH <VH(5) _VH(t),V0 >ds
- . .
B |max) g, / (6 + 0+ u(s) — ulty) x H(s),0') ds
"= = te—
- - .
—E maxz 1o, , / <ui x (n' + & + H(s)— H(t)),0 >dS
"= = te—1
- S te ¢, gt ¢
+E gblng; 1o, ,., /te_l <V -V(p"+ 6 +u(s) —u(ty)), 0 >ds
- - .
+E mgxz 1o, , / <(pe +0° +u(s) —u(ty) x (v-V)up, 0€> ds]
" =" = te—1
- - .
+E Inrllgiliz_: 1o, , /tg 1 <u(s) x (v - V)(p" + 0° + u(s) — u(ty)), 0£> ds]
- - .
FE |maxd 1a, / (Mp(u(s)) ~ My(uf, ), 6") ds
"= te-1

+ kE

max 3" Lo, (fatulto) ~ (o] >ef>]

- t=1

e [‘Jiiﬂ W"’@] 8 x> <"W>]
- =l =1

maxz 1o, , /t(Z <MR(u(s)) — MR(ui_l),£€> ds]
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m ty
+E |max Y 1o, / (Glu(s)) —G<u£—1>,ef>dw<s>]
=1 -1
1 01(2
— 5E [6°]15] + B+ L+ + Dua. (3.39)

We will estimate each term on the last line, noting the regularity of the solution in Proposition 2.2.
Let € > 0 be a constant to be determined later. For the first term, by (2.13) and Young’s inequality,

n 2 n
/¢ /—1
>t e > Lo
/=1 /=1
n 2
4
Z]}'Q”’Zfl o ]L2] ’
/=1

For the second term, by Young’s inequality, (2.13), and Proposition 2.2,

n
E : ]]‘Qn,l—l
(=1

n to
S 1o, / |EL(s) — EL(t)22 ds
74

0=1 te—1

n
Z ]lQn,Zfl
(=1

Similarly, for the terms I3 and Iy we have

2
|| < Ck™'E + CkE iy

0 ‘

< Cnh*k™' + CKE

o]

4 o||?
’12|§Ch +€]€E £ L2

2
L2

n
Z 19&,271
(=1

[ n
+ CKE Z 1o, ,
L/=1

+ CE

+ CkE

ee‘

2
< ChY 4 Ok 4 kE ¢! HL

2
2|

n 9 n te
|I3] < ekE Z 1o, , ngHLQ +CE Z 1o, , / IVH(s) — VH(tg)H]ig ds]
=1 =1 te—
n 2
< ek |y 1q,, vo’fHLz 4 Ck3 0, (3.40)

and noting (3.32),

n

te
> Lo, / 1 H ()12 [lw(s) — w(te)|f4 d8]
/=1 —1

|14 < Ch* + CKE | 1q,, |0 | +CE
Li=1

n

D lo,., sw [H(s)E: HU(S)—u(te)HiAl]

=1 s€[te—1,te]

<Ch'+CKE Y 1o, ,||6°| ||+ CIE
L{=1

]L2

< Ch'+CKE | 1o, , (0] || +Crk'™.
Li=1

For the term I5, by Holder’s and Young’s inequalities and (2.22), for any € > 0 we have

n ty
4 4 l ¢
<2 St [ bl (o] + e, + i - o) o], ds]

<crm | to, a6 ] + ont+ km [t €]
< - Qo1 h L4 L4 o Qro—1 12

n ty

+E | g, / | H(s) — H(t,)]} ds]
=1 b
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n n 9
Z ]]'Qﬁffl Z ]lQrc,Zfl L2
/=1 /=1

n 2
Z ]lQ“’Z*1 L2 ’
/=1

For the terms Ig to Ig, we note Lemma 3.2 and apply similar argument to obtain

2
< ChY 4 Ck' + CK2KE 6" HL2 + ekE

vof‘

+ ekE

3

[ n 9 n 2

4 2 4
1| < CKE [;nw_l 0 HM +eh? + ek ;nw_l Vo ‘M]
- ,
+ ek Z]lm,“/ IVu(s) — Vau(te)||f dS]

Lr=1 te—

[ " 2 n 2
4 4 2 1-0

< CKE ;1%“ 0 HL + ek ;1%“ Vo HL +Ch? + k'Y,

1

ES o[L,| + o lmaxlol] e (kz v
- =1

o1 3
2
L2

n
Z ﬂﬂn,é—l
=1

n te
HOUE S t0,, [ IVuRIE fuls) - ulta)E ds]
=1 te—1
n 2
Y4 -6
< ckE ;ﬂwl o' | + ot cnii=,
- g2 [ 2 2 2
I < CE Y 1o, 0], / )l ds | + % [l |
=1 -
n 9 tn
+ehE | Y 1., vafHM +eE |1q, / yvu(s)—vu(tn)\im]
/=1 tn—1
n 2 n 2
l 2 1-6 Y4
< CKEE ;ngw 0 Hm + Ch? + k'™ + kE ;1%“ Vo (M].

For the terms Iy, 119, and I3, we apply the Lipschitz continuity assumption on Mpz and fgr to

obtain
2
+ ekE .
]LZ

n
: : ]]‘Qn,l—l

=1

2
\Io| + [Iy0] + |I13] < Ch* + Ck'™% + CkE HEH]LQ

n
: : ]]‘Qn,l—l
(=1

2
2|’

¢

The terms I1; and 12 can be estimated easily as

n
Z ]]'Qn,ffl
(=1

For the term I14, we split the stochastic integral as

2
11| + | T12| < CKE 04HL2 + ChY + ckE

n
Z ]lQn,Zfl
/=1

]

m to
Ly =FE |maxy 1o, , / (Glu(s) - Gluf™),0") dW(s)]
m<n — ’ to_1
m te
+E [max 1o, , / (Gluls)) - Gluf™), 6" - 0“>dW<s>] =: T4 + I1ap-
msn =1 t571
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For the first term above, noting the assumptions on G and the Hélder continuity of w, we apply
the Burkholder-Davis—Gundy and the Young inequalities to obtain

Ly, < CE <Z]IQM 1/

te—1

1
9 3
ds
]LQ

Glu(s)) - Gluf )|

2

Glu(s)) ~ Gluf™)|

0571’

]LQ

< CE <I£2§]m”’m o™ 1H]L2> (Z]IQM 1/1

=

2 2

)
n 2

; lg,, m] .

For the term I145, we use Young’s inequality, It0’s isometry, the assumptions on G, and the Hélder
continuity of u to obtain

96—1‘

<R [mgxngml HG’”H?LQ] + Ch* 4+ Ck'™° + CkE

2
n te n 9
Ly S CE |} || To,, / (Glu(s) - Gu™)) aw(s)| | +eE Y 1q,, of_ef—ljml
(=1 ot L2 =1
- 2 ) 2
_ -1 0 pl—1
=CE ;ﬂnn,u /tl 1 )G — Gy, )HLst +eE ;1%“ 0' -0 ‘M]

+ cE

n
: : HQK,Z—I

/=1

< Ch*+ Ck'™% + CKE

o' 1H

2
Z]lgm_, ) m]'

We substitute all the above estimates into (3.39), set € = 1/16, and rearrange the terms. Now,
continuing from (3.39), noting the assumption h = O(k) we obtain

n 2
E [1%1335 (ﬂQn,mq ||9m||]%2>] + ZE []lﬂm,el ]Lg]
= =1

n n
Z]lﬂﬂ’gfl Z]IQN,Zfl
=1 =1

<E [HOOHiQ] +OR}+ C(1+ Rk + C1+ Kk > E [ﬂm,e_l
(=1

0(—1’

05 . 0571‘

+kE vefH; +kE

96”;} . (3.41)

By choosing u?L such that E [HGOHEAQ} < Ch?, say u?L = Iljug, we infer the required result for
sufficiently small k£ by the discrete Gronwall lemma. O

We also deduce the following estimate in stronger norms.

Proposition 3.6. Assume that the hypotheses of Proposition 3.5 hold. Then forn € {1,2,..., N},
we have

e T ) 5 o O (L Y T o R e
/=1

m_

where C' is a constant depending on R, T', and the coeflicients of the equation, but is independent

of h and k.

Proof. We put x;, = —Ap0° in (3.34), then multiply the resulting equations by 1g,_, ,, sum the
resulting expression over ¢ € {1,2,...,m}, take the expectation value, and argue similarly as
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in (3.36) and (3.39) to obtain

1 . 1 _
SE [max (ngﬁ,m,l I Hﬁz)] + SE ve' —ve'?

m<n

n
Z ]IQK,Z—l
(=1

n
> 1o, <p€ -, Ah9£>
/=1

2
]LQ

< SE[[ve°lls.] +

- ,
(Mo [ (n' €4 HE) - H) M) ds]
Lé=1

te—1

. .
~E|> 1q,,., / Ve  + VH(s) — VH(ty), VAh94> ds]
L{=1

ti—1

- .,
+E|D 1o, / (p' + 0" +u(s) — u(ty)) x H(s), Ahaf> ds]
Le=1 b

n to
+E|Y Lo, / uj, x (0 + &+ H(s) - H(te>),Ahef>ds]
L{=1

te—1
o "

- E z : ]IQN,E—l /
Le=1 te—1

ty
—E Z 1o, , / (" +0° +u(s) —u(ty)) x (v-V)ub, Ah0£> ds]
Le=1 te—1

{

{

{

<u V(p'+0° +u(s) —ulty)), Ahef> ds]

{

~E|Y 1a.,., / ! <u(s) x (- V) (p' +0° +u(s) — ulty)), Ahof> ds]
{

Le=1 te—1
~E|> 1o, / Mp(u(s)) —MR<uf:1>,Ahef>ds]
Le=1 b

~E|Y 1q., . / N <G(u(s))—G(uffl),Ah0€> dW(s)].

23

(3.42)

Similarly, we take ¢, = kA?6° and rearrange the terms. Noting the definition of Ay, in (2.14), we

have

=kE

n
Z ]]'Q»i,f—l

(=1

2
kE VAhofH
]LQ

Zn: Lo, ,, <V€Z, VAh04> ds]

(=1

— kE [zn: 1o, , <vnhn‘, VAh9f>
/=1

+ kE

(=1

Adding (3.42) and (3.43), upon rearranging the terms we obtain

n
Z ]IQK,Z—I
/=1

1 1
SE |max (1a,,,,, [V6™|2:) | + 5E
2 <n ! 2

m<

ve' - ve“‘(;]

Z Lo, , <VthR(U(tz)) — VI, fr(u), '), VA,LE'

)|

(3.43)
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n n

Z ]]-Q’%e*l Z ]lﬂme—l
g

< IR iz St o]

/=1
[ n
+E Z o, . <pf —pt Ahef>

~E an / <nf+§€+H(s)—H(te),Ahof>d5]

Lé=1 =1

2
+kE A,6" H + kE
]LQ

v

te—1

) Zn:]lm 1/ <VH(3)—VH(tg),VAh0£>ds]

— kE [i o, . <vnhnf, VAh0£>

/=1
+kE z": 1o, , <Vﬂth(u(te)) — VI fr(w, ), VAh06>

/=1
+E ;:; 1o, , /; (p' + 0" +u(s) —u(ty)) x H(s), Ah0£> ds]
+E ezn; lo,, /t:el uf x (' + &'+ H(s) — H(ty)), Ah0£> ds]
-E Z 1o, , /jl v-V(p'+ 0"+ u(s) —u(ty), Aha’v’> ds]

~E > 1q,,., / ’ u(s) x (v - V) (p* + 0"+ u(s) — ulty)), Ahof> ds]

Le=1 te—1

{
(
(
_E zn: Io, , /:Z (6" + 6"+ uls) — ult) x (v V)uf, A,6") ds]
(
—E Z 1o, , /ItlZ <MR(U(S)) — MR(ui*1)7 Ah0€> dS]
{

B> a0 [ " G(u(s))—G(ui—1>,Ahe@>dw<s>]

=: Il+12+---+113. (344)

We will estimate each term on the last line. In the following, whenever appropriate, we always
use Proposition 2.2 and 3.5 without further mention. Let € > 0. For the first term, by (2.16) and
Young’s inequality we have

2

L2

2
| < CKE vefHM + ekE VAL

n
Z ]IQR,Z—I
/=1

n
Z ]lﬂm,é—l
(=1
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n
Z ]].QH,[fl
=1

For the second term, by Young’s inequality and (2.13),
n
2
4 /—1
>t =]
/=1 L
n
Z ]lgn,l—l
(=1

2
L2 |
Similarly, noting Proposition 2.2 we have

n n
Z]]-Q,{’gfl Z]lﬂnlfl
/=1 (=1
n té 2
S i, / |EL(s) — H (1) ds
14
2
L2’

=1 te—1
n
Z ]lQK,Zfl
=1

< CeCr* (h2 + k%ﬂs) + ekE

VAha‘»’H;] .

|I| < CE™'E + ekE Ny

n
Z 19;1,271
(=1

2
]LQ

< Cnh*k™! + ¢kE AL6°

2
I3] < Cht + CKE seHU + kE A6

2
]LQ

+CE

< CeCF (h2 n k%*‘;) + ekE A,6"

n 2 n ty
14| < ekE | 1, , VAhafHLQ +CE |> 1o, , / ||VH(5)—VH(tg)||]izds]
=1 =1 te—1
n 2
<k |3 1., VAhe)@HLQ + Ok, (3.45)
/=1

For the term I5, we use (2.10) and Young’s inequality to deduce

n
Z ]]‘Qn,lfl

(=1

|Is| < Ch? 4 ek

VAhofH;] .

Next, for the term I we apply Young’s inequality, (2.10), (2.28), and (2.13). By Proposition 2.2
(Holder continuity of u) and the Sobolev embeddings, we obtain for any 6 > 0,

|Ig] < ekE Ezn;]lm,“ VAMH; + CKE Zzn;ﬂm,u VfR(u(tZ))_va(qu_l)‘;]
<4k |3 1a,, v, | + o S, (1+ lfutte) |- ) va@—wf;l\;]
_ (=1
FORE |3 1, | (1 + Nt ) IVt 124 |[ulte) = uf™ L]
/=1
< ¢kE gzn;]lwl VAhBZ\;]

+C(1 + kYHEE Vu(ty) — Vu(te_,) + VO + vptt

n
Z ]]‘Qn,ffl
(=1

Y 2
Z]IQN,H U(te)—u(tg,l)Jrgfflerzfl M]
=1

2
]LQ

+C(1+ k*)KE
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n
Z ]]'Qn,l—l
{=1

+C(1+ rHEE

2
< kE VA0 H
]L2

+O(1+ kY (k” + h2)

2

n
Z ]]‘QH,Zfl

(=1

04—1‘

Hl

2
< kE VA,6" H
L2

4 O(1 + w4l <h2 n k%_‘5> , (3.46)

n
: : ]]‘Qn,é—l
{=1

where in the last step we also used Proposition 3.5. For the term I7, by Young’s inequality and
(2.13), we have

I <E ;ng [ o+t o] Vs ] ds]
< ¢kE Z::]lﬂmgl AhﬁwH;4 +Ch'E [HHH%%"(LQ)}
+ CkE ;:; Lo, , e IE (1)) ||6° ;]
| CE ;ng / I (3)12 lus) — u(te) |24 ds]
< ¢kE LE:; 1o, , VAhefH; +O(1 4 5)eCr (hQ - k%—‘s) ,

where in the last step we also used (2.16) and (2.22), Proposition 3.5, and the Holder continuity of
u. Next, similarly we have

n to
14 ¢ 1 14
e[S [l ol e, - on ] s
n 9 1 n 9 2]z
¢ it |’ ¢
< ckE ;ﬂwl At | +CE [3‘33“’73}&2} E (k:;Huh‘W)

+ CrkE + CkE

€.

n
Z ]lQm,Z—l
(=1

n
> dq,,, IVALE"E
/=1

n ty
> Lo, / | H (s) — H(to)| dS]
(=1

ti—1

< ¢kE +C(1+ IQ)GCKQ <h2 + k:%_5> .

For the terms 119 and I11, we apply similar argument as above to infer that

n ty
<5 S [ (o )+ i) o] o], o
=1 -
n 2 2 1
< ekE |> 1o, , vAhBEHLQ +C(1+ K)e" <h2+k5‘5),
(=1
n ty
4 14 4
il <2 [$ 0 [t (7], 70, 70t St o],
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n
Z ]lQK;,Z—l
=1

Next, by Young’s inequality and (2.13), it is easy to see that

n n
Z ]IQH,Z—l ZﬂQH,Z—l
=1

(=1

2
< kE A6 H
]L2

+ C(1 + k) <h2 + k%*‘s) .

2 2
Io| + |I1a| < ekE VAhefHL2 + ekE AhafHLQ

Ce " (h? + k279).
o et

Finally, we split the stochastic integral in I3 as

m tZ
Iis=E mgxz 1o, , , / <VHhG(u(s)) - VHhG(ufl—l)7 V0L1> dW(s)]
msn £:1 tl*l
m t,g
+E 1722(2 lo,, . /t <VHhG(u(s)) — VIIL,G(u) 1), Vo' — vef—1> dW(s)]
= =1 -1
=: 13 + I13p-

For the first term above, noting the assumptions on G, the H' stability of IIj, and the Holder
continuity of u, we apply the Burkholder-Davis—Gundy and the Young inequalities to obtain

. .,
Iz, < CE Z Lo, , /
| \e=1 tp_1
1
2 2

For the term I3, we use Young’s inequality, It6’s isometry, the assumptions on G, and the Holder
continuity of u to obtain

1

watute) - vt ), [0 |} )

n te
-1
<CE <r£g%<11m,m1 |ver Hm) (ZZ:; To, ., /u_l

/—
Vu(s) — Vu, !

< eE [m’gx 1q |V0m||]i2] + CeCr (h2 + k%—‘s) )

k,m—1 |

n 2

Igy <CE |
=1

n
Z ]]'QN,Zfl
=1

lo,, | / ! (VI G u(s)) ~ VI Gty )) AW ()

ti—1

]LQ

+ €eE

2
ve' — va‘f—lH ]
]L2

n te 2
—CcE|Y 1q., / VI G (u(s)) — VHhG(qu_l)HLQ ds]
/=1 te—1
n 2
4 (—1
+eE ;11%[_1 Vo' - Vo HL2]

< CeCF (h2 n k%—5) )

n 2
S g, .|V - vaf—l‘ ] .
/=1 Y L2

We now substitute all the above estimates into (3.44), set ¢ = 1/16, and rearrange the terms.
Altogether, continuing from (3.44) we deduce that

n
Z ]IQN,E—l
/=1

+ kE

2
B max (L, [VO"[2:)] + B Nt

n
Z ]IQN,Z—I
/=1

VA6 H;]
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<E[[V6°fa] + CL+ ke (12 + £370). (3.47)

Furthermore, note that by setting ¢, = —kAR&" in (3.35), multiplying by 1g
expectation, then applying (2.14) and (3.31), we obtain

and taking

k,n—1

KE [T, IVE"|2:] = kE [La,,, , (VII", VE")] +KE [1q,, , (VA6", VE")]
+KE [Lo,,,_, (VI fr(u(tn)) — VI, fr(u) '), VE™)]
< Ckh? + kE [Mmfl va"HH{Q} + CEE [ngmﬂ HVAhO"H]QLQ}
+ CHE (Lo, , [V fr(u(t,) - VI fa(up D[] (3.48)

where in the last step we used Young’s inequality and (2.13). The final term in (3.48) can be
estimated using (2.28) as done in (3.46). Summing (3.48) over £ € {1,2,...,n} and applying (3.47),
we obtain

vell.

n
kE [Z 1o, ,
(=1

Choosing ug such that E [HVGOHiQ} < Ch?, say “2 = IIjug, we deduce the required result from
the last estimate and (3.47). O

<E[[V6°lfa] + CL+ ke (12 + £370).

The following error estimate, which holds over a sample space with large probability, now follows
from the above propositions. Indeed, note that by Chebyshev’s inequality,

1 2 2 12 Crr
> L >1—- —,
P[] 21— (m Lgr?%nu(t)uﬂ +E [ £3§T||H<t>up] +E [gl<a,3§!|uh|!H1D -

Here, Cg 1 is a constant depending on R, T', and the coefficients of the equation, which is conferred
by Lemma 3.3 and Proposition 2.2. Therefore, P [€2, ;] — 1 as kK — oo.

Theorem 3.7. Assume that the hypotheses of Proposition 3.5 hold. Then for n € {1,2,..., N},
we have

n
2
B max (Lo Ju(tn) — wfl ) + b E o,

2 ~ Or2 1
H(tg)—HfLHHJ < CeC <h2+k2 5),
(3.49)

where C is a constant depending on R and T, but is independent of i and k.

Proof. This follows from Proposition 3.5, Proposition 3.6, equations (3.29) and (3.30), estimate (2.13),
and the triangle inequality. O

We now define the following quantities:

n
2
A, = max (]mﬁ ) — uh’”uﬁﬂl) 8> 1o, |H(t) - HfLH , (3.50)
m<n ’ —1 ’ H!
n 2
A, = max (]1 o |ult )—umH21) +ES dg HH(tg)—H"H (3.51)
n - e Qﬁ,m71 m h IITH i Qn,efl h H . .

By choosing an appropriate value of k, we will derive some convergence results. Firstly, we have
the following theorem on convergence in probability with a rate.
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Theorem 3.8. Under the hypothesis of Proposition 3.5, for n € {1,2,..., N} we have

n 2
_oom2 = 24 > 2(1-28) 1a-88))| _
h£%+P[‘£32‘”“( m) Rl k3 ) — B 2 0 (1070 4079 | <0

for any a,§ > 0.

Proof. By Chebyshev’s inequality and Theorem 3.7 with x? = O (log(log 1/h)), for any a,§ > 0 we
have

P

max [u(tm) — i +kz HH (t0) HhH a(h20=29) 4 0= sa>)]

<a’l (hQ(l—%) + kﬁ(l—&”) 11@ [Ap] + P [Q,m 1}

=

< Ca! (n20720) 4 078 B (P20 4 k30=49)) 4 O (Tog(log(1/R))) 2,

which tends to 0 as h,k — 0. O
We now assume that 82 = 0 to derive a strong order of convergence for the scheme.

Theorem 3.9. Suppose that S2 = 0. Under the hypothesis of Proposition 3.5, forn € {1,2,..., N}

we have

E <c, (h2 + k”‘s)‘ s (3.52)

n 2
max [w(tm) — wp |Fn + k; HH(W) B HiHHl

for any r > 1. In particular, the right-hand side of (3.52) tends to 0 as h,k — 0F.

Proof. Note that by Holder’s inequality with exponents 2971 and p = 2971 /(2971 — 1), where ¢ > 1,
we have

1 3a=T
B maxte  lu(tn) — ] < [P (060 1)]" |B (o bl + maxlap )|
m<n Kym—1 m<n

te[0,T]
(3.53)
Similarly,
94-17 53T
n y 2 % n ) Z )
E k;llgg,z_l HH(te)*Hh‘Hl SC[ <Qn 1)} E k;HH(Q)HHIJFHHh N
(3.54)

The last terms on the right-hand side of (3.53) and (3.54) are bounded due to the assumed regularity
in Proposition 2.2 and the stability estimate (3.27). Therefore, it remains to establish a bound for

the probability of the ‘bad’ set ngfl. To this end, by Chebyshev’s inequality and the definition
of the set {2 ,,—1,

og—1
P (0) < [ (e (OB + s DEFOIES + max )|

which implies by the definition (3.51),
E [212] < o2 (3.55)
For sufficiently small h and k, we now choose

K2 = é (’log (h2 + k%_‘s)‘ — (2971 — 1) log ‘log (h2 + k%_‘;) D ,
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where C is the constant in (3.49). With this choice of «, noting (3.55), we have by (3.49), (3.53),
and (3.54),

n 2
E max [w(tm) — wp | + k; HH(U) B HleHl

-

< CeC (W2 4 k3~ 5) + O 2

s
<
(i)

for any r > 1. This completes the proof of the theorem. ]

<C,

Remark 3.10. If the initial data wug is more regular, say ug € H?, then by a similar argument as
in [23], one can show that the pathwise solution w of (2.7) belongs to LP(€; C*(0,T; H?)), where
a € (0,3), for any p > 1. In that case, an O(k'~°) bound can be obtained in (3.40) and (3.45),
leading to an O(k'~?%) bound in Proposition 3.5, Proposition 3.6, and Theorem 3.7 (instead of

O(kéfa) as stated). Consequently, the right-hand side of (3.52) would read C, ‘10g (h? + K'79) ‘_r
in this case.

ACKNOWLEDGEMENTS

The authors acknowledge financial support through the Australian Research Council’s Discovery
Projects funding scheme (project DP200101866).

Agus L. Soenjaya is supported by the Australian Government Research Training Program (RTP)
Scholarship awarded at the University of New South Wales, Sydney.

REFERENCES

[1] D. C. Antonopoulou, G. Karali, and A. Millet. Existence and regularity of solution for a stochastic Cahn-
Hilliard /Allen-Cahn equation with unbounded noise diffusion. J. Differential Equations, 260 (2016), 2383-2417.
2] L. Banas, Z. Brzezniak, M. Neklyudov, and A. Prohl. A convergent finite-element-based discretization of the
stochastic Landau-Lifshitz-Gilbert equation. IMA J. Numer. Anal., 34 (2014), 502-549.
[3] R. E. Bank and H. Yserentant. On the H'-stability of the Lo-projection onto finite element spaces. Numer.
Math., 126 (2014), 361-381.
[4] H. Bessaih and A. Millet. Strong L? convergence of time numerical schemes for the stochastic two-dimensional
Navier-Stokes equations. IMA J. Numer. Anal., 39 (2019), 2135-2167.
[5] L. Bevilacqua, A. Galedo, J. Simas, and A. Doce. A new theory for anomalous diffusion with a bimodal flux
distribution. J. Braz. Soc. Mech. Sci. Eng., 35 (2013), 431-440.
[6] D. Breit and A. Dodgson. Convergence rates for the numerical approximation of the 2D stochastic Navier-Stokes
equations. Numer. Math., 147 (2021), 553-578.
[7] Z. Brzezniak, B. Goldys, and K. N. Le. Existence of a unique solution and invariant measures for the stochastic
Landau-Lifshitz-Bloch equation. J. Differential Equations, 269 (2020), 9471-9507.
[8] L. A. Caffarelli and N. E. Muler. An L® bound for solutions of the Cahn-Hilliard equation. Arch. Rational Mech.
Anal., 133 (1995), 129-144.
[9] M. Cai, R. Qi, and X. Wang. Strong convergence rates of an explicit scheme for stochastic Cahn-Hilliard equation
with additive noise. BIT, 63 (2023), Paper No. 43, 35.
[10] E. Carelli and A. Prohl. Rates of convergence for discretizations of the stochastic incompressible Navier-Stokes
equations. STAM J. Numer. Anal., 50 (2012), 2467—-2496.
[11] S. Chai, Y. Cao, Y. Zou, and W. Zhao. Conforming finite element methods for the stochastic Cahn-Hilliard-Cook
equation. Appl. Numer. Math., 124 (2018), 44-56.
[12] D. S. Cohen and J. D. Murray. A generalized diffusion model for growth and dispersal in a population. J. Math.
Biol., 12 (1981), 237-249.
[13] N. Condette, C. Melcher, and E. Siili. Spectral approximation of pattern-forming nonlinear evolution equations
with double-well potentials of quadratic growth. Math. Comp., 80 (2011), 205-223.
[14] M. Crouzeix and V. Thomée. The stability in L, and Wp1 of the Lo-projection onto finite element function spaces.
Math. Comp., 48 (1987), 521-532.



[15]
[16]
[17]
18]
[19]
[20]
[21]
[22]
23]
[24]
[25]
[26]
[27]
28]
[29]
[30]
[31]
[32]
33
[34]
[35]
136]
[37]
38
[39]
[40]
1]
[42]

(43]

A MIXED FEM FOR A CLASS OF FOURTH-ORDER SPDES WITH MULTIPLICATIVE NOISE 31

J. Cui and J. Hong. Strong and weak convergence rates of a spatial approximation for stochastic partial differential
equation with one-sided Lipschitz coefficient. STAM J. Numer. Anal., 57 (2019), 1815-1841.

D. Dor and M. Pierre. A robust family of exponential attractors for a linear time discretization of the Cahn-
Hilliard equation with a source term. ESAIM Math. Model. Numer. Anal., 58 (2024), 1755-1783.

J. Douglas, Jr., T. Dupont, and L. Wahlbin. The stability in L? of the L?-projection into finite element function
spaces. Numer. Math., 23 (1974/75), 193-197.

R. F. L. Evans, D. Hinzke, U. Atxitia, U. Nowak, R. W. Chantrell, and O. Chubykalo-Fesenko. Stochastic form
of the Landau-Lifshitz-Bloch equation. Phys. Rev. B, 85 (2012), 014433.

X. Feng, Y. Li, and Y. Zhang. A fully discrete mixed finite element method for the stochastic Cahn-Hilliard
equation with gradient-type multiplicative noise. J. Sci. Comput., 83 (2020), Paper No. 23, 24.

D. Furihata, M. Kovécs, S. Larsson, and F. Lindgren. Strong convergence of a fully discrete finite element
approximation of the stochastic Cahn-Hilliard equation. STAM J. Numer. Anal., 56 (2018), 708-731.

V. Girault and P.-A. Raviart. Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin,
1986.

B. Goldys, C. Jiao, and K.-N. Le. Numerical method and error estimate for stochastic Landau—Lifshitz—Bloch
equation. IMA Journal of Numerical Analysis, 1 (2024), drae046.

B. Goldys, A. L. Soenjaya, and T. Tran. The stochastic Landau-Lifshitz—Baryakhtar equation: Global solution
and invariant measure. arXiv:2405.14112, 2024.

X. Gui, B. Li, and J. Wang. Convergence of renormalized finite element methods for heat flow of harmonic maps.
SIAM J. Numer. Anal., 60 (2022), 312-338.

1. Gyongy and A. Millet. Rate of convergence of space time approximations for stochastic evolution equations.
Potential Anal., 30 (2009), 29-64.

C. Huang and J. Shen. Stability and convergence analysis of a fully discrete semi-implicit scheme for stochastic
Allen-Cahn equations with multiplicative noise. Math. Comp., 92 (2023), 2685-2713.

M. Hutzenthaler and A. Jentzen. Numerical approximations of stochastic differential equations with non-globally
Lipschitz continuous coefficients. Mem. Amer. Math. Soc., 236 (2015), v-+99.

D. Kessler, R. H. Nochetto, and A. Schmidt. A posteriori error control for the Allen-Cahn problem: circumventing
Gronwall’s inequality. M2AN Math. Model. Numer. Anal., 38 (2004), 129-142.

M. Kovécs, S. Larsson, and A. Mesforush. Finite element approximation of the Cahn-Hilliard-Cook equation.
SIAM J. Numer. Anal., 49 (2011), 2407-2429.

K. F. Lam. Global and exponential attractors for a Cahn-Hilliard equation with logarithmic potentials and mass
source. J. Differential Equations, 312 (2022), 237-275.

K.-N. Le, A. L. Soenjaya, and T. Tran. The Landau—Lifshitz—Bloch equation: Unique existence and finite element
approximation. arXiv:2406.05808, 2024.

C. Lee, H. Kim, S. Yoon, J. Park, S. Kim, J. Yang, and J. Kim. On the evolutionary dynamics of the Cahn-Hilliard
equation with cut-off mass source. Numer. Math. Theory Methods Appl., 14 (2021), 242-260.

D. Leykekhman and B. Li. Weak discrete maximum principle of finite element methods in convex polyhedra.
Math. Comp., 90 (2021), 1-18.

Z. Liu and Z. Qiao. Strong approximation of monotone stochastic partial differential equations driven by multi-
plicative noise. Stoch. Partial Differ. Equ. Anal. Comput., 9 (2021), 559-602.

R. Rannacher and R. Scott. Some optimal error estimates for piecewise linear finite element approximations.
Math. Comp., 38 (1982), 437—-445.

L. Scarpa. Analysis and optimal velocity control of a stochastic convective Cahn-Hilliard equation. J. Nonlinear
Sci., 31 (2021), Paper No. 45, 57.

J. Shen and X. Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discrete Contin.
Dyn. Syst., 28 (2010), 1669-1691.

W. Shi, X.-G. Yang, L. Cui, and A. Miranville. A generalized Allen-Cahn model with mass source and its
Cahn-Hilliard limit. ZAMM Z. Angew. Math. Mech., 104 (2024), Paper No. 202301026, 26.

A. L. Soenjaya. Mixed Finite Element Methods for the Landau-Lifshitz—Baryakhtar and the Regularised Landau—
Lifshitz—Bloch Equations in Micromagnetics. J. Sci. Comput., 103 (2025), Paper No. 65.

A. L. Soenjaya and T. Tran. Global solutions of the Landau-Lifshitz-Baryakhtar equation. J. Differential Fqua-
tions, 371 (2023), 191-230.

A. L. Soenjaya and T. Tran. Stable C'-conforming finite element methods for a class of nonlinear fourth-order
evolution equations. arXiv:2309.05530, 2023.

L. Wang and H. Yu. On efficient second order stabilized semi-implicit schemes for the Cahn-Hilliard phase-field
equation. J. Sci. Comput., 77 (2018), 1185-1209.

F. Xu, B. Liu, and L. Zhang. Well-posedness and large deviations of Lévy-driven Marcus stochastic Landau-
Lifshitz-Baryakhtar equation. arXiv:2406.05684, 2024.



32

BENIAMIN GOLDYS, AGUS L. SOENJAYA, AND THANH TRAN

SCHOOL OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF SYDNEY, SYDNEY 2006, AUSTRALIA
Email address: beniamin.goldys@sydney.edu.au

SCHOOL OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF NEW SOUTH WALES, SYDNEY 2052, AUSTRALIA
Email address: a.soenjaya@unsw.edu.au

SCHOOL OF MATHEMATICS AND STATISTICS, THE UNIVERSITY OF NEW SOUTH WALES, SYDNEY 2052, AUSTRALIA
Email address: thanh.tran@unsw.edu.au



	1. Introduction
	2. Preliminaries
	2.1. Notations
	2.2. Assumptions
	2.3. Existence, uniqueness, and regularity of solution
	2.4. Finite element approximation
	2.5. Identities and inequalities

	3. A fully-discrete mixed finite element method
	Acknowledgements
	References

