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Abstract

We consider the centre of the affine vertex algebra at the critical level associated with
the orthosymplectic Lie superalgebra. It is well-known that the centre is a commutative
superalgebra, and we construct a family of its elements in an explicit form. In particular, this
gives a new proof of the formulas for the central elements for the orthogonal and symplectic
Lie algebras. Our arguments rely on the properties of a new extended Brauer-type algebra.

1 Introduction
Let g be a finite-dimensional Lie superalgebra over C that is equipped with an invariant super-
symmetric bilinear form. Consider the corresponding affine Kac–Moody superalgebra ĝ defined
as a central extension

ĝ = g [t, t−1] ⊕ CK

of the Lie superalgebra of Laurent polynomials g [t, t−1]. The vacuum module Vκ(g) at the level
κ ∈ C is the quotient of the universal enveloping algebra U(ĝ) by the left ideal generated by g[t]
and K − κ. The vacuum module has a vertex algebra structure and is known as the (universal)
affine vertex algebra; see e.g. [8] and [10] for definitions. The centre of this vertex algebra is a
commutative associative superalgebra which can be regarded as a subalgebra of U(t−1g [t−1]).

In the case of a simple Lie algebra g, the centre is trivial, except at the critical level κ = −h∨,
where h∨ is the dual Coxeter number for g. The vertex algebra V−h∨(g) has a large centre z(ĝ)
which can be described by

z(ĝ) = {S ∈ V−h∨(g) | g[t]S = 0}. (1.1)

Any element of z(ĝ) is called a Segal–Sugawara vector. The algebra z(ĝ) is equipped with the
derivation τ = −d/dt arising from the vertex algebra structure. By the celebrated theorem of
Feigin and Frenkel [5], the differential algebra z(ĝ) possesses generators S1, . . . , Sn so that z(ĝ)
is the algebra of polynomials

z(ĝ) = C [τ rSl | l = 1, . . . , n, r ⩾ 0],

where n = rank g; see also [8]. The algebra z(ĝ) is known as the Feigin–Frenkel centre, and the
elements S1, . . . , Sn form a complete set of Segal–Sugawara vectors.
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Explicit formulas for complete sets of Segal–Sugawara vectors were given in [3] and [4] for
the Lie algebras g of type A, and in [13] for types B, C and D with the use of the Brauer algebra.
A detailed exposition of these results, together with applications to commutative subalgebras in
enveloping algebras and to higher order Hamiltonians in the Gaudin models, can be found in
[14]. A complete set of Segal–Sugawara vectors for the Lie algebra of type G2 was produced
in [18] using computer-assisted calculations. A different method to construct generators of z(ĝ)
was developed in [22] which led to new explicit formulas in the case of the Lie algebras of types
B,C,D and G2. It was shown in [15] that they coincide with those in [13] in the classical types.
Note also the recent work [20] where interpolating families of Segal–Sugawara operators were
constructed in the context of categorical vertex algebra theory.

Although no general analogue of the Feigin–Frenkel theorem is known in the super case,
a few families of Segal–Sugawara vectors for the general linear Lie superalgebra glm|n were
constructed in [17], and it was conjectured therein that these vectors generate the centre z(ĝlm|n)
of the associated affine vertex algebra at the critical level. The conjecture was proved for gl1|1
in [16], and for gl2|1 in [2]. The affine vertex algebra associated with the orthosymplectic Lie
superalgebra osp1|2 was investigated in [1]. A conjectural description of its centre at the critical
level was pointed out in [1, Remark 10].

Our goal in this paper is to construct a family of Segal–Sugawara vectors for the Lie superal-
gebra ospM |2n. As with the case of the orthogonal and symplectic Lie algebras considered in [13]
(see also [14, Ch. 8]), we rely on the properties of a distinguished element s(m) (the symmetriser)
of the Brauer algebra Bm(ω). According to the super version of the Schur–Weyl duality, the
actions of ospM |2n and Bm(ω) (with ω = M − 2n) on the tensor product space (CM |2n)⊗m

commute, thus allowing us to apply a similar approach to the orthosymplectic Lie superalgebra.
However, the arguments used for the Lie algebras do not readily extend to the super case. The
main obstacle is the singularity of the symmetriser s(m); it is a rational function of ω which may
have a pole at ω = M − 2n.

We solve the problem by using a new Brauer-type algebra B̂2m+1(ω) containing B2m+1(ω) as
a subalgebra. We construct abstract Segal–Sugawara vectors as elements of B̂2m+1(ω), keeping
ω as an indeterminate. Then we show that the abstract Segal–Sugawara vectors admit an equiva-
lent ‘integral form’ where the symmetriser s(m) is replaced by the symmetriser in the symmetric
group algebra, thus allowing the required evaluation of ω.

Our main result is Theorem 2.1; it provides explicit formulas for Segal–Sugawara vectors Φm

for ospM |2n. In particular, these elements are even, and they generate a commutative subalgebra
of the universal enveloping algebra of the Lie superalgebra t−1ospM |2n[t−1]; see Corollary 2.2.
We believe that if M is odd, then the vectors Φ2k generate the centre of the affine vertex algebra,
as stated in Conjecture 2.3.

With the significance of the Feigin–Frenkel centre in applications to Gaudin models and
Vinberg’s quantisation problem [6], [7], [21], we expect that the explicit Segal–Sugawara vectors
Φm will play a due role in understanding the higher Hamiltonians in the Gaudin models with the
osp-symmetry and the quantum shift of argument subalgebras in U(ospM |2n).
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2 Segal–Sugawara vectors
We use the involution i 7→ i ′ = M + 2n− i+ 1 on the set {1, 2, . . . ,M + 2n}. Set

ı̄ =

1 for i = 1, . . . , n, n′, . . . , 1′,

0 for i = n+ 1, . . . , (n+ 1) ′

and

εi =

 1 for i = 1, . . . ,M + n,

−1 for i = M + n+ 1, . . . ,M + 2n.

2.1 Lie superalgebras
A standard basis of the general linear Lie superalgebra glM |2n is formed by elements Eij of the
parity ı̄+ ȷ̄ mod 2 for 1 ⩽ i, j ⩽M + 2n, with the commutation relations

[Eij, Ekl] = δkj Ei l − δi l(−1)(ı̄+ȷ̄)(k̄+l̄) Ekj.

We will regard the orthosymplectic Lie superalgebra ospM |2n as the subalgebra of glM |2n spanned
by the elements

Fij = Eij − (−1)ı̄ ȷ̄+ȷ̄ εiεjEj′i′ .

The corresponding affine Kac–Moody superalgebra ôspM |2n := ospM |2n [t, t−1] ⊕ CK has Lie
superbracket[

Fij[r], Fkl[s]
]

= δjkFil[r + s] − δil(−1)(ı̄+ȷ̄)(k̄+l̄)Fkj[r + s] − δik′(−1)ı̄ȷ̄+ȷ̄εiεjFj′l[r + s]

+ δjl′(−1)ı̄k̄+ȷ̄k̄εiεjFki′ [r + s] + rδr,−s

(
(−1)ı̄δilδjk − (−1)ı̄ȷ̄εiεjδik′δjl′

)
K,

where Fij[r] := Fijt
r for each r ∈ Z and 1 ⩽ i, j ⩽M + 2n, and K is central.

2.2 Vacuum module
The vacuum module V−h∨(ospM |2n) over ôspM |2n at the critical level is the quotient of the univer-
sal enveloping algebra U(ôspM |2n) by the left ideal generated by K + h∨ and ospM |2n[t], where
h∨ = M − 2n− 2 is the dual Coxeter number for ospM |2n.

Equipping the vacuum module V−h∨(ospM |2n) with the derivation τ := −d/dt yields a vertex
algebra called the affine vertex algebra; see e.g. [10] for details. As vector spaces, we have the
isomorphism

V−h∨(ospM |2n) ∼= U
(
t−1ospM |2n[t−1]

)
. (2.1)

The centre z(ôspM |2n) of the affine vertex algebra defined as in (1.1) is called the Feigin–Frenkel
centre, and its elements are called Segal–Sugawara vectors. Due to (2.1), the Feigin–Frenkel
centre can be regarded as a commutative subalgebra of U

(
t−1ospM |2n[t−1]

)
; see e.g. [8, Sec. 3.3]

and [14, Sec. 6.2]. Moreover, this subalgebra is invariant under the derivation τ so that we can
regard z(ôspM |2n) as a differential superalgebra.
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2.3 Main results
Consider the Lie superalgebra ôspM |2n ⊕ Cτ , where τ is even and satisfies

[τ,K] = 0 and
[
τ, Fij[r]

]
= −rFij[r − 1].

We let U denote the universal enveloping algebra U
(
ôspM |2n ⊕Cτ

)
. Consider the tensor product

superalgebra (
EndCM |2n

)⊗m
⊗ U, (2.2)

and for 1 ⩽ a ⩽ m and r ∈ Z define the elements

F [r]a :=
M+2n∑
i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(m−a) ⊗ Fij[r](−1)ı̄ȷ̄+ı̄+ȷ̄, (2.3)

where the eij ∈ EndCM |2n are the standard matrix units.
The symmetric group Sm acts on the space (CM |2n)⊗m by permuting tensor factors. Denote

by H(m) the element of the algebra (2.2) (with identity component in U) which is the image of
the symmetriser h(m) ∈ CSm defined by

h(m) = 1
m!

∑
s∈Sm

s (2.4)

under the action of Sm. Furthermore, let λ = (λ1, . . . , λℓ) be a partition ofm of length ℓ = ℓ(λ),
so that λ1 ⩾ · · · ⩾ λℓ > 0 and λ1 + · · · + λℓ = m. We denote by cλ the number of permutations
in the symmetric group Sm of cycle type λ. Set

F [−λ] = F [−λ1]1 . . . F [−λℓ]ℓ, (2.5)

and for any m ⩾ 2, introduce elements Φm ∈ U
(
t−1ospM |2n[t−1]

)
by

Φm =
∑

λ ⊢m, ℓ(λ) even

Ym,ℓ(M − 2n− 1) cλ str1,...,ℓ H
(ℓ)F [−λ]. (2.6)

Here we use the polynomials Ym,ℓ(T ) in a variable T defined by

Ym,ℓ(T ) = ℓ!
m!

m−1∏
k=ℓ

(T + k);

cf. [20], while the supertrace

str : EndCM |2n → C , eij 7→ δij(−1)ı̄

is taken over the first ℓ copies of EndCM |2n. The following is our main result.

Theorem 2.1. All elements Φm belong to the Feigin–Frenkel centre z(ôspM |2n).
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The proof of the theorem will be given in Sec. 4, with some preliminary results discussed in
Sec. 3. In the following corollary, we use the isomorphism (2.1).

Corollary 2.2. The elements Φm with m = 2, 3, . . . generate a commutative subalgebra of
U
(
t−1ospM |2n[t−1]

)
.

Conjecture 2.3. If M is odd, then the elements Φ2,Φ4,Φ6, . . . generate z(ôspM |2n) as a differ-
ential superalgebra.

The conjecture holds for n = 0 by [15]. It is likely that for even values of M some ad-
ditional elements of z(ôspM |2n) arising from the super Pfaffian are necessary to generate this
superalgebra; cf. [11] and [12].

Remark 2.4. By taking M = 0 or n = 0 in Theorem 2.1, we get elements of the respective
Feigin–Frenkel centres z(ŝp2n) or z(ôM). We thus obtain a new proof of the formulas for the
Segal–Sugawara vectors for the orthogonal and symplectic Lie algebras given in [15].

3 Extended Brauer-type algebra
To prove Theorem 2.1, we will consider its abstract version first. Namely, we will introduce a
new algebra B̂2m+1(ω), and construct abstract analogues of the Segal–Sugawara vectors ϕm as
elements of B̂2m+1(ω), regarding ω as a variable. We show that the vectors satisfy the desired
properties and that they are well-defined at ω = M − 2n. We then use a homomorphism from
B̂2m+1(M − 2n) to the tensor product superalgebra to get the actual Segal–Sugawara vectors Φm

in the vacuum module over ôspM |2n. The details will be given in Sec. 4, while this section is
devoted to some preliminary results on the algebra B̂2m+1(ω).

3.1 Brauer algebra
Let ω be an indeterminate. Recall that the Brauer algebra Bm(ω) is the associative unital algebra
with identity 1, generated by sa and ϵa with 1 ⩽ a ⩽ m− 1, subject only to the relations

s2
a = 1, ϵ2

a = ω ϵa, saϵa = ϵasa = ϵa,

sasb = sbsa, ϵaϵb = ϵbϵa, saϵb = ϵbsa, |a− b| > 1,

sasa+1sa = sa+1sasa+1, ϵaϵa+1ϵa = ϵa, ϵa+1ϵaϵa+1 = ϵa+1,

saϵa+1ϵa = sa+1ϵa, ϵa+1ϵasa+1 = ϵa+1sa.

For 1 ⩽ a < b ⩽ m we can also define

sab = sasa+1 . . . sb−2sb−1sb−2 . . . sa+1sa,

ϵab = sasa+1 . . . sb−2ϵb−1sb−2 . . . sa+1sa,

and set sba = sab and ϵba = ϵab.
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The Brauer algebra Bm(ω) also has a diagrammatic presentation as follows. The algebra has
a basis of diagrams, where each diagram consists of two horizontal lines, each withm nodes, and
m strings connecting the nodes pairwise. The product xy of two diagrams x and y is computed
by concatenation; we draw y directly above x, connect the strings at the nodes in the middle,
remove the middle line, and replace each loop formed by a factor of ω. For example, in B7(ω), if

x = , y = ,

then

xy = = ω2 .

This can be identified with the non-diagrammatic presentation of Bm(ω) by taking

sab = ...
...

...

1 a b m

, ϵab = ... ... ...

1 a b m

.

For each 1 ⩽ a ⩽ m, we define the partial transposition ta : Bm(ω) → Bm(ω) as the
linear map taking each basis diagram d to the diagram obtained by swapping the string endpoints
connected to the nodes numbered a on the top and bottom of d. For example, in B6(ω), we have

d = , dt5 = .

The Brauer symmetriser s(m) ∈ Bm(ω) is the unique nonzero element satisfying

s(m)s(m) = s(m), sas
(m) = s(m)sa = s(m), ϵas

(m) = s(m)ϵa = 0

for all 1 ⩽ a ⩽ m− 1. It follows that

sabs
(m) = s(m)sab = s(m), ϵabs

(m) = s(m)ϵab = 0

for all 1 ⩽ a < b ⩽ m. A few explicit expressions for s(m) are collected in [14, Ch. 1]. In
particular,

s(m) = 1
m!

⌊m/2⌋∑
r=0

(−1)r

(
ω/2 +m− 2

r

)−1 ∑
d∈D(r)

d, (3.1)

where D(r) ⊂ Bm(ω) denotes the set of diagrams which have exactly r horizontal strings in the
top row; see [9].
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The Brauer algebra Bm(ω) has a subalgebra isomorphic to the symmetric group algebra
CSm, generated by sa with 1 ⩽ a ⩽ m − 1. We thus have elements h(m) ∈ Bm(ω) defined
as in (2.4).

Let Jm be the vector subspace of Bm(ω) spanned by sums of the form d + dta , for any
basis diagram d and 1 ⩽ a ⩽ m. From Lemma 2.4 of [15], the Brauer and symmetric group
symmetrisers in Bm(ω) satisfy

γm(ω)s(m) ≡ h(m) mod Jm, (3.2)

where
γm(ω) := ω +m− 2

ω + 2m− 2 . (3.3)

This result is readily generalised using the embeddings Bk(ω) ↪→ Bm(ω) for 1 ⩽ k ⩽ m obtained
by adding m− k pairs of nodes on the right of each diagram, connected by vertical strings. That
is, in Bm(ω), we have

γk(ω)s(k) ≡ h(k) mod J (k)
m , (3.4)

where J (k)
m is the vector subspace of Bm(ω) spanned by sums of the form d + dta , for any basis

diagram dwhose rightmostm−k pairs of nodes are connected by vertical strings, and 1 ⩽ a ⩽ k.
The Brauer algebra Bm(ω) with parameter ω = M − 2n acts on the tensor product space

(CM |2n)⊗m so that there is a homomorphism

Bm(M − 2n) →
(

EndCM |2n
)⊗m

(3.5)

which is defined by sab 7→ Pab and ϵab 7→ Qab, where

Pab :=
M+2n∑
i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ eji ⊗ 1⊗(m−b)(−1)ȷ̄,

Qab :=
M+2n∑
i,j=1

1⊗(a−1) ⊗ eij ⊗ 1⊗(b−a−1) ⊗ ei′j′ ⊗ 1⊗(m−b)(−1)ı̄ȷ̄+ı̄+ȷ̄εiεj

for 1 ⩽ a < b ⩽ m. As we will work with the extended tensor product superalgebra, we will
usually identify these elements with Pab ⊗ 1 and Qab ⊗ 1 in (2.2), respectively. For b < a, define
Pab := Pba and Qab := Qba.

The following easily verified property of the operators Qab will be essential in the proof of
Theorem 2.1. Suppose that X is an element of the superalgebra (2.2). We will also identify X
with the element X ⊗ 1 of this superalgebra but with the parameter m replaced by m+ 1. Then
for any 1 ⩽ a ⩽ m we have

Qa m+1XQa m+1 = (stra X)Qa m+1, (3.6)

where stra denotes the partial supertrace taken over the a-th copy of the endomorphism super-
algebra in (2.2). We will use a version of relation (3.6) in the extended Brauer algebra to define
the ‘supertrace’ on the algebra.
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3.2 Affine extension of the Brauer algebra
Our definition of the extended Brauer-type algebra is motivated by the matrix form of the defining
relations for the affine Kac–Moody superalgebra ôspM |2n; see Sec. 2.1. Namely, we can derive
from the defining relations of ôspM |2n described in Sec. 2.1 that the elements F [r]a defined in
(2.3) satisfy the relations

F [r]aF [s]b − F [s]bF [r]a
= (Pab −Qab)F [r + s]b − F [r + s]b(Pab −Qab) + rδr,−s(Pab −Qab)K

for all 1 ⩽ a < b ⩽ m. Moreover, we also have QabF [r]aQab = 0,

PabF [r]a = F [r]bPab and Qab

(
F [r]a + F [r]b

)
=
(
F [r]a + F [r]b

)
Qab = 0,

whereas Pab and Qab commute with F [r]c for c ̸= a, b.
Following the approach of [19], where the degenerate affine Wenzl algebra was introduced (it

is also known as the Nazarov–Wenzl algebra), we use these matrix relations to give the following
definition.

Definition 3.1. Let ω be an indeterminate. Define B aff
m (ω) as the associative unital algebra

generated by the Brauer algebra Bm(ω) together with additional elements f [r]a with 1 ⩽ a ⩽ m
and r running over Z , and τ,K, subject to the following relations. The element K is central, τ
commutes with any element of Bm(ω), and we also have

f [r]af [s]b − f [s]bf [r]a
= (sab − ϵab) f [r + s]b − f [r + s]b (sab − ϵab) + rδr,−s (sab − ϵab)K, (3.7)

sabf [r]a = f [r]bsab and ϵab

(
f [r]a + f [r]b

)
=
(
f [r]a + f [r]b

)
ϵab = 0,

sabf [r]c = f [r]csab and ϵabf [r]c = f [r]cϵab for c ̸= a, b,

ϵabf [r]aϵab = 0, f [r]aτ − τf [r]a = rf [r − 1]a. (3.8)

We have the epimorphism B aff
m (ω) → Bm(ω) identical on elements of Bm(ω) and sending

f [r]a, τ and K to zero. Hence, we have a natural embedding Bm(ω) ↪→ B aff
m (ω) so that Bm(ω)

can be regarded as a subalgebra of B aff
m (ω).

The defining relations of B aff
m (ω) show that this algebra is defined over the algebra of polyno-

mials C [ω]. However, we will also need to consider it over the field of rational functions C(ω),
as occurs already in (3.1). We will not introduce new notation for the extended algebra as this
will be specified in the context.

Remark 3.2. As with the Nazarov–Wenzl algebra, it should be natural to impose some additional
relations in B aff

m (ω) to develop its reasonable structure theory; cf. [19, Sec. 4]. We will leave this
topic outside the current paper, as this algebra will play only an auxiliary role here.
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We will need the following key property of B aff
m (ω). Recall the tensor product superalgebra

defined in (2.2).

Proposition 3.3. The map that sends τ and K to the elements with the same names, and sends

sab 7→ Pab, ϵab 7→ Qab, f [r]a 7→ F [r]a,

defines a homomorphism

B aff
m (M − 2n) →

(
EndCM |2n

)⊗m
⊗ U.

Proof. The verification of the relations is straightforward; they follow from the matrix form of
the defining relations in U pointed out above.

3.3 Cyclic properties in the extended Brauer algebra
We will work with a slightly modified version of the algebra B aff

m (ω). Define B̂2m+1(ω) as the
associative unital algebra, generated by the Brauer algebra B2m+1(ω) with the elements sab and
ϵab labelled by a, b ∈ {0, 1, . . . , 2m}, a ̸= b, together with the additional elements f [r]a with
0 ⩽ a ⩽ m and r running over Z , and τ,K, subject to the same relations as in Definition 3.1.
The formulas as in Proposition 3.3 define a homomorphism

ρ : B̂2m+1(M − 2n) →
(
EndCM |2n

)⊗(2m+1)
⊗ U, (3.9)

where the copies of the endomorphism algebra are labelled by 0, 1, . . . , 2m. In B̂2m+1(ω), for
1 ⩽ k ⩽ m, set

q(k) = ϵ1 m+1 . . . ϵk m+k. (3.10)

We wish to use left- and right-multiplication by q(k) as an analogue of the partial trace operator
str1,...,k; cf. (3.6). We will need two cyclic properties in B̂2m+1(ω) described in the following
propositions. In the notation below, the angle brackets indicate the subalgebras generated by the
listed elements.

Proposition 3.4 (Cyclic property 1). For 1 ⩽ k ⩽ m, suppose

x ∈ ⟨sa, ϵa | 1 ⩽ a ⩽ k − 1⟩ = Bk(ω) ⊆ B̂2m+1(ω),

y ∈ ⟨sa, ϵa, f [r]b, τ,K | 0 ⩽ a ⩽ k − 1, 0 ⩽ b ⩽ k, r ∈ Z⟩ ⊆ B̂2m+1(ω).

Then
q(k)xyq(k) = q(k)yxq(k).

Proof. We first note that, if we wish to verify a relation in B̂2m+1(ω) that involves only the Brauer
generators, it suffices to verify the corresponding relation in B2m+1(ω), because of the embedding
B2m+1(ω) ↪→ B̂2m+1(ω); see Sec. 3.2. In particular, we can make use of the diagrammatic
presentation of B2m+1(ω).
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For 1 ⩽ a < b ⩽ m, then, it is easy to verify that

ϵa m+aϵb m+bsab = ϵa m+aϵb m+bsm+a m+b, (3.11)
ϵa m+aϵb m+bϵab = ϵa m+aϵb m+bϵm+a m+b, (3.12)

sm+a m+bϵa m+aϵb m+b = sabϵa m+aϵb m+b, (3.13)
ϵm+a m+bϵa m+aϵb m+b = ϵabϵa m+aϵb m+b. (3.14)

Now, note that all of the indices of the ϵ generators involved in q(k) are distinct, so those
generators commute. It follows that the first generator of x, either sab or ϵab, can be converted
to sm+a m+b or ϵm+a m+b, using (3.11) or (3.12), respectively. The resulting generator commutes
with the rest of x and all of y, and can be converted back to the generator we started with using
(3.13) or (3.14), respectively. Thus the first generator of x can be moved to the right of y.
This process can be repeated for all generators of x, because each sab or ϵab becomes sm+a m+b

or ϵm+a m+b respectively, and then commutes with all other generators of x, and with y. The
generators of x can thus be moved to the right of y, ending up in the same order as they were in
x, which proves the result.

Proposition 3.5 (Cyclic property 2). For 1 ⩽ k ⩽ m, suppose

x ∈ ⟨sa, ϵa, f [r]b, τ,K | 1 ⩽ a ⩽ k − 1, 1 ⩽ b ⩽ k, r ∈ Z⟩ ⊆ B̂2m+1(ω).

Then for any 1 ⩽ a ⩽ k, and y ∈ {s0a, ϵ0a}, we have

q(k)xyq(k) = q(k)yxq(k).

Proof. One can check diagrammatically that, for 1 ⩽ a ⩽ k,

ϵa m+as0a = ϵa m+aϵ0 m+a, ϵ0 m+aϵa m+a = s0aϵa m+a,

ϵa m+aϵ0a = ϵa m+as0 m+a, s0 m+aϵa m+a = ϵ0aϵa m+a.

It follows that

q(k)s0axq
(k) = q(k)ϵ0 m+axq

(k) = q(k)xϵ0 m+aq
(k) = q(k)xs0aq

(k),

since each generator of x commutes with ϵ0 m+a. The relation for y = ϵ0a is proven analogously.

4 Abstract Segal–Sugawara vectors
Now we explain our strategy to prove Theorem 2.1 in more detail. The theorem will follow by
verifying that the elements Φm ∈ V−h∨(ospM |2n) are annihilated by the action of ospM |2n[t]; see
(1.1). Since the orthosymplectic Lie superalgebra is simple, it suffices to show that

Fij[0]Φm = Fij[1]Φm = 0 (4.1)
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for all i, j. In the case n = 0 (i.e., for the orthogonal Lie algebra oM ), the verification of (4.1)
was carried out with the use of the matrix techniques, where Φm is first represented as a weighted
trace of the symmetriser in the Brauer algebra [13], and then brought to the form (2.6); see [15].
In the super case for arbitrary n, the corresponding initial expression would take the form

Φm = γm(M − 2n) str1,...,m S(m)
(
τ + F [−1]1

)
. . .
(
τ + F [−1]m

)
1, (4.2)

where γm(ω) is defined in (3.3), while S(m) denotes the image of the symmetriser s(m) introduced
in (3.1), under the homomorphism (3.5), and we assume τ1 = 0. However, since γm(ω) and s(m)

are rational functions in ω, the expression in (4.2) is not defined for some values of M and n.
The same problem already occurs for the symplectic Lie algebra sp2n (i.e., for M = 0); a way
around this was found in [13] (see also [14, Sec. 8.3]) with the use of ‘analytic continuation’
over n. Its extension to arbitrary M appears to be problematic as a super version of the argument
should rely on orthosymplectic invariant theory, which is much less well-understood; cf. [11].

Our way to settle the singularity issue of the expression in (4.2) is to ‘lift’ it to the algebra
B̂2m+1(ω) while keeping ω as an indeterminate, thus working over the field of rational functions
C(ω). Namely, we find some ‘abstract’ counterparts ϕm ∈ B̂2m+1(ω) of Φm satisfying the de-
sired annihilation properties. This requires consistent definitions of the supertraces in B̂2m+1(ω)
and in the tensor product superalgebra appearing in (3.9). For the latter, we use the observation
(3.6), which implies a counterpart of (4.2) without an explicit use of the supertrace:

ΦmQ
(m) = Q(m)

(
γm(M − 2n)S(m)

(
τ + F [−1]1

)
. . .
(
τ + F [−1]m

)
1
)
Q(m),

assuming Φm is defined, where for each 1 ⩽ k ⩽ m we set

Q(k) := Q1 m+1Q2 m+2 . . . Qk m+k ∈
(
EndCM |2n

)⊗2m
.

As a final step, we use (3.2) to find an equivalent ‘integral form’ of the abstract Segal–Sugawara
vectors ϕm, implying that the singularities in (4.2) are removable, by showing that the vectors
ϕm allow for a well-defined evaluation at ω = M − 2n, yielding formula (2.6).

4.1 Annihilation properties
To implement the program, begin by setting

fa := τ + f [−1]a ∈ B̂2m+1(ω), a = 1, . . . ,m.

Use notation (3.10) and introduce the element

q(m)s(m)f1 . . . fmq
(m) ∈ B̂2m+1(ω). (4.3)

We can regard it as a polynomial in τ by moving the powers of τ to their right-most positions by
using the second relation in (3.8). Our goal is to show that all coefficients of this polynomial are
abstract Segal–Sugawara vectors in the sense that both expressions

f [0]0 q(m)s(m)f1 . . . fmq
(m) and f [1]0 q(m)s(m)f1 . . . fmq

(m) (4.4)

are zero modulo the left ideal in B̂2m+1(ω) generated by the subspaces f [r]a B2m+1(ω) for r ⩾ 0
and a = 0, . . . ,m, assuming that the ‘abstract level’ is critical: K = −ω + 2.
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Proposition 4.1. In B̂2m+1(ω), we have

f [0]0 q(m)s(m)f1 . . . fmq
(m) = q(m)s(m)f1 . . . fmq

(m)f [0]0.

Proof. Let φxy := sxy − ϵxy. For 1 ⩽ a ⩽ m, we have from the defining relations in B̂2m+1(ω)
and (3.7) that

f [0]0fa − faf [0]0 = φ0afa − faφ0a.

Then

f [0]0q(m)s(m)f1 . . . fmq
(m) =

m∑
a=1

q(m)s(m)f1 . . . fa−1
(
f [0]0fa − faf [0]0

)
fa+1 . . . fmq

(m)

+ q(m)s(m)f1 . . . fmf [0]0q(m).

The sum equals

m∑
a=1

q(m)s(m)f1 . . . fa−1
(
φ0afa − faφ0a

)
fa+1 . . . fmq

(m)

=
m∑

a=1
q(m)s(m)φ0af1 . . . fmq

(m) −
m∑

a=1
q(m)s(m)f1 . . . fmφ0aq

(m).

Applying cyclic property 2, and noting that s(m) commutes with the sum of φ0a, this becomes

M∑
a=1

q(m)φ0as
(m)f1 . . . fmq

(m) −
M∑

a=1
q(m)φ0as

(m)f1 . . . fmq
(m) = 0,

as desired.

The second expression in (4.4) is more difficult to handle, requiring a few lemmas.

Lemma 4.2. In B̂2m+1(ω), for 1 ⩽ k ⩽ m, we have

ϵk m+ks
(k)φ0kϵk m+k = ω + 2k − 2

k(ω + 2k − 4)s
(k−1)

(
k−1∑
a=1

φ0a

)
ϵk m+k. (4.5)

Proof. In the Brauer algebra Bk(ω), it is known that

s(k) = 1
k(ω + 2k − 4)

(
1 +

k−1∑
a=1

(sak − ϵak)
)(

ω + k − 3 +
k−1∑
a=1

(sak − ϵak)
)
s(k−1);

see [14, proof of Lemma 1.3.2]. Expanding this and applying Brauer relations, we find

s(k) = 1
k

(
1 +

k−1∑
a=1

sak − 2
ω + 2k − 4

(
k−1∑
a=1

ϵak +
∑

1⩽a<b⩽k−1
sakϵbk

))
s(k−1). (4.6)

Due to the embeddings Bk(ω) ↪→ Bm(ω) ↪→ B̂2m+1(ω), this result holds in B̂2m+1(ω) also.
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Substituting the above expression for s(k) into the left-hand side of (4.5), we can commute
the φ0k left past the ϵk m+k and s(k−1), expand, and simplify the resulting expression by noting
that

ϵk m+k φ0k ϵk m+k = 0, ϵk m+k sak φ0k ϵk m+k = φ0a ϵk m+k,

ϵk m+k ϵak φ0k ϵk m+k = −φ0a ϵk m+k, ϵk m+k sak ϵbk φ0k ϵk m+k = ϵab φ0a ϵk m+k.

This gives

ϵk m+k s
(k) φ0k ϵk m+k = 1

k

(
ω + 2k − 2
ω + 2k − 4

k−1∑
a=1

φ0a − 2
ω + 2k − 4

∑
1⩽a<b⩽k−1

ϵabφ0a

)
ϵk m+ks

(k−1)

which equals
ω + 2k − 2

k(ω + 2k − 4)

(
k−1∑
a=1

φ0a

)
ϵk m+ks

(k−1),

since s(k−1) commutes with ϵk m+k, and

ϵab φ0a ϵk m+k s
(k−1) = ϵab φ0a s

(k−1) ϵk m+k = 0.

The latter holds by noting that

ϵab φ0a s
(k−1) = ϵab φ0a sabs

(k−1) = ϵab sab φ0b s
(k−1) = ϵab φ0b s

(k−1) = −ϵab φ0a s
(k−1),

completing the proof.

Lemma 4.3. In B̂2m+1(ω), for 1 ⩽ k ⩽ m we have

ϵk m+k s
(k)ϵk m+k = (ω + k − 3)(ω + 2k − 2)

k(ω + 2k − 4) s(k−1)ϵk m+k.

Proof. We substitute the expression (4.6) for s(k) into the left-hand side, and then use that s(k−1)

and ϵk m+k commute to pull both copies of ϵk m+k inside the brackets. We then simplify each
term using the Brauer relations, and pull a remaining copy of ϵk m+k back out of the brackets, to
the right. This gives

ϵk m+k s
(k)ϵk m+k

= 1
k

(
ω +

k−1∑
a=1

1 − 2
ω + 2k − 4

k−1∑
a=1

1 − 2
ω + 2k − 4

∑
1⩽a<b⩽k−1

ϵab

)
s(k−1)ϵk m+k,

which may be simplified to give the result by noting that ϵabs
(k−1) = 0.

Lemma 4.4. Let 1 ⩽ a < b ⩽ k ⩽ m. Then, in B̂2m+1(ω), we have

sab f1 . . . fks
(k) = f1 . . . fks

(k).

13



Proof. It suffices to show this for b = a+ 1, since sab is equal to a product of generators sc with
a ⩽ c < b. Using fa = τ + f [−1]a and the defining relations of B̂2m+1(ω), it is tedious but
straightforward to show that

fafa+1

(1 + sa

2 − ϵa

ω

)
= fa+1fa

(1 + sa

2 − ϵa

ω

)
.

We note also that the expression in the brackets is absorbed by s(k), and commutes with fb for
b ⩾ a + 2, while sa commutes with fb for b ⩽ a − 1. The result follows readily from these
observations.

Corollary 4.5. Let 1 ⩽ k ⩽ m. Then for any 1 ⩽ a < b ⩽ k, we have

q(k)s(k)φ0af1 . . . fkq
(k) = q(k)s(k)φ0bf1 . . . fkq

(k)

in B̂2m+1(ω).

Proof. This follows from s(k)sab = sabs
(k) = s(k), Lemma 4.4, and cyclic property 1.

We are now in a position to establish the desired property of the second expression in (4.4),
as given in the next proposition.

Proposition 4.6. In B̂2m+1(ω), we have

f [1]0 q(m)s(m)f1 . . . fmq
(m)

= (ω +K − 2) ω + 2m− 2
ω + 2m− 4

(
m−1∑
a=1

q(m−1)s(m−1)φ0af1 . . . fm−1q
(m−1)

)
ϵm 2m

−mq(m)φ0ms
(m)f1 . . . fm−1f [0]mq(m) +mq(m)s(m)f1 . . . fm−1q

(m)f [0]0

+mq(m)s(m)φ0mf1 . . . fm−1f [0]mq(m) + q(m)s(m)f1 . . . fmq
(m)f [1]0.

Proof. We first note that

f [1]0fa − faf [1]0 = f [0]0 + φ0af [0]a − f [0]aφ0a + φ0aK, (4.7)

and

f [0]afb − fbf [0]a = φabfb − fbφab. (4.8)

Similar to the proof of Proposition 4.1, we begin by rewriting our expression as a telescoping
sum. We then apply (4.7), finding

f [1]0 q(m)s(m)f1 . . . fmq
(m)

=
m∑

a=1
q(m)s(m)f1 . . . fa−1

(
f [0]0 + φ0af [0]a − f [0]aφ0a + φ0aK

)
fa+1 . . . fmq

(m)

+ q(m)s(m)f1 . . . fmq
(m)f [1]0.
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Expanding the brackets gives four sums; we rewrite the first three as telescoping sums in an
additional index b, and apply (4.8) to represent the sum over a in the form∑

1⩽a<b⩽m

q(m)s(m)f1 . . . fa−1fa+1 . . . fb−1
(
φ0bfb − fbφ0b

)
fb+1 . . . fmq

(m)

+
m∑

a=1
q(m)s(m)f1 . . . fa−1fa+1 . . . fmq

(m)f [0]0

+
∑

1⩽a<b⩽m

q(m)s(m)φ0af1 . . . fa−1fa+1 . . . fb−1
(
φabfb − fbφab

)
fb+1 . . . fmq

(m)

+
m∑

a=1
q(m)s(m)φ0af1 . . . fa−1fa+1 . . . fmf [0]aq(m)

−
∑

1⩽a<b⩽m

q(m)s(m)f1 . . . fa−1fa+1 . . . fb−1
(
φabfb − fbφab

)
fb+1 . . . fmφ0aq

(m)

−
m∑

a=1
q(m)s(m)f1 . . . fa−1fa+1 . . . fmf [0]aφ0aq

(m)

+K
m∑

a=1
q(m)s(m)φ0af1 . . . fa−1fa+1 . . . fmq

(m).

We now manipulate the three sums over a and b, and the final sum. Since s(m)sxy = s(m) for
1 ⩽ x < y ⩽ m, we can insert sm−1 m . . . sa a+1 after the s(m) in each sum. We move this product
to the right in each word, using

swxφyz = φyzswx, swxφxy = φwyswx, swxφwx = φwxswx,

and
swxfy = fyswx, swxfx = fwswx

for w, x, y, z distinct, and then apply cyclic property 1 to bring it back to the left of s(m), where it
is absorbed. We also move φxy throughout the word, using φxyfz = fzφxy for distinct x, y, z, and
cyclic property 1 or 2 as appropriate; that is, for x, y ̸= 0, and x = 0, respectively. Additionally,
for 1 ⩽ x < y ⩽ m, we use φxys

(m) = s(m)φxy = s(m). The resulting summands are then
independent of one or more of the summation indices, and we simplify the sums accordingly.

In the first sum, for example, inserting the product sm−1 m . . . sa a+1 gives∑
1⩽a<b⩽m

q(m)s(m)sm−1 m . . . sa a+1f1 . . . fa−1fa+1 . . . fb−1 φ0b fbfb+1 . . . fmq
(m)

−
∑

1⩽a<b⩽m

q(m)s(m)sm−1 m . . . sa a+1f1 . . . fa−1fa+1 . . . fb−1fb φ0b fb+1 . . . fmq
(m),

which equals∑
1⩽a<b⩽m

q(m)s(m)f1 . . . fb−2 φ0 b−1 fb−1 . . . fm−1sm−1 m . . . sa a+1q
(m)

−
∑

1⩽a<b⩽m

q(m)s(m)f1 . . . fb−2fb−1 φ0 b−1 fb . . . fm−1sm−1 m . . . sa a+1q
(m).
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We then apply cyclic property 1 and the absorption property of the symmetriser, followed by
φxyfz = fzφxy for distinct x, y, z, to write the first sum as∑
1⩽a<b⩽m

(
q(m)s(m)f1 . . . fb−2 φ0 b−1 fb−1 . . . fm−1q

(m) − q(m)s(m)f1 . . . fb−1 φ0 b−1 fb . . . fm−1q
(m)
)
,

=
∑

1⩽a<b⩽m

(
q(m)s(m) φ0 b−1 f1 . . . fm−1q

(m) − q(m)s(m)f1 . . . fm−1 φ0 b−1 q
(m)
)
.

The summands do not depend on a, so may be simplified to

m−1∑
a=1

aq(m)s(m) φ0a f1 . . . fm−1q
(m) −

m−1∑
a=1

aq(m)s(m)f1 . . . fm−1 φ0a q
(m)

=
m−1∑
a=1

aq(m)s(m) φ0a f1 . . . fm−1q
(m) −

m−1∑
a=1

aq(m) φ0a s
(m)f1 . . . fm−1q

(m),

where the last line uses cyclic property 2.
Simplifying the other sums similarly, and grouping some like terms, we represent the initial

expression f [1]0 q(m)s(m)f1 . . . fmq
(m) as

m−1∑
a=1

aq(m)s(m)φ0af1 . . . fm−1q
(m) −

m−1∑
a=1

aq(m) φ0a s
(m)f1 . . . fm−1q

(m)

+
m−1∑
a=1

aq(m)s(m)φ0mφa mf1 . . . fm−1q
(m) +

m−1∑
a=1

aq(m)φamφ0ms
(m)f1 . . . fm−1q

(m)

plus the sum of the terms

m(K −m+ 1)q(m)s(m)φ0mf1 . . . fm−1q
(m) −mq(m)φ0ms

(m)f1 . . . fm−1f [0]mq(m)

+mq(m)s(m)f1 . . . fm−1q
(m)f [0]0 +mq(m)s(m)φ0mf1 . . . fm−1f [0]mq(m)

+ q(m)s(m)f1 . . . fmq
(m)f [1]0.

Now, using the Brauer relations and the properties of the symmetriser, we have

s(m)φ0msam = s(m)sam φ0a = s(m)φ0a

and
s(m)φ0mϵam = s(m)s0mϵam − s(m)ϵ0mϵam = s(m)s0mϵam − s(m)s0mϵam = 0,

so that
s(m)φ0mφam = s(m)φ0a,

and analogously,
φamφ0ms

(m) = φ0as
(m).

16



The four sums over a may thus be simplified to

2
m−1∑
a=1

aq(m)s(m)φ0af1 . . . fm−1q
(m) = 2

m−1∑
a=1

aq(m−1)ϵm 2ms
(m)ϵm 2mφ0af1 . . . fm−1q

(m−1)

= 2(ω +m− 3)(ω + 2m− 2)
m(ω + 2m− 4)

m−1∑
a=1

aq(m−1)s(m−1)φ0af1 . . . fm−1q
(m−1)ϵm 2m,

using q(m) = q(m−1)ϵm 2m = ϵm 2mq
(m−1) and Lemma 4.3 with k = m. From Corollary 4.5 with

k = m − 1, however, q(m−1)s(m−1)φ0af1 . . . fm−1q
(m−1) has the same value for each a, so this

can be further simplified to

(ω +m− 3)(ω + 2m− 2)
ω + 2m− 4

m−1∑
a=1

q(m−1)s(m−1)φ0af1 . . . fm−1q
(m−1)ϵm 2m.

Similarly, using Lemma 4.2 with k = m, we also have

m(K −m+ 1)q(m)s(m)φ0mf1 . . . fm−1q
(m)

= (K −m+ 1)(ω + 2m− 2)
ω + 2m− 4

m−1∑
a=1

q(m−1)s(m−1)φ0af1 . . . fm−1q
(m−1)ϵm 2m.

Substituting these results back into the expansion of f [1]0 q(m)s(m)f1 . . . fmq
(m) gives the desired

expression.

4.2 Integral form of the abstract Segal–Sugawara vectors
Propositions 4.1 and 4.6 show that all coefficients of the polynomial in τ defined in (4.3) are
abstract Segal–Sugawara vectors. However, the coefficients are defined in the algebra B̂2m+1(ω)
over the field C(ω). Since we aim to evaluate ω atM−2n, we would like to bring the coefficients
to an ‘integral form’ to be regarded as elements of B̂2m+1(ω) over C [ω]. As we point out below
(see Remark 4.9(i)), all coefficients are easily expressible in terms of the constant terms of the
polynomials in τ . Therefore, we will only be concerned with the constant terms modified by the
scalar defined in (3.3):

ϕm := γm(ω)q(m)s(m)f1 . . . fmq
(m) 1, (4.9)

assuming τ 1 = 0. We will keep the notation introduced in Sec. 2.3, and for a partition of λ ⊢ m
of length ℓ = ℓ(λ), set

f [−λ] = f [−λ1]1 . . . f [−λℓ]ℓ;
cf. (2.5).

Proposition 4.7. The element (4.9) is given by the formula

ϕm =
∑

λ ⊢m, ℓ(λ) even

Ym,ℓ(ω − 1) cλ q
(ℓ)h(ℓ)f [−λ]q(m). (4.10)

17



Proof. Expand each fa as τ + f [−1]a and use the second relation in (3.8) to move all copies of
τ to the right. It follows that ϕm is a linear combination of terms of the form

γm(ω)q(m)s(m)f [−r1]a1 . . . f [−rℓ]aℓ
q(m), (4.11)

where 1 ⩽ a1 < · · · < aℓ ⩽ m and the ri are positive integers with r1 + · · · + rℓ = m. Now, by
(3.7) for r, s > 0, we have

f [−r]af [−s]b = f [−s]bf [−r]a + φabf [−r − s]b − f [−r − s]bφab.

Applying this to each term, we can swap adjacent f [−ri]ai
until the ri are weakly decreasing.

Since s(m)φab = φabs
(m) = s(m), the additional terms with φab cancel out by cyclic property 1.

Then, using s(m)sab = sabs
(m) = s(m) together with sabf [−r]a = f [−r]bsab and cyclic prop-

erty 1, we can insert appropriate permutations sab after s(m) to change the indices of the f [−r]a
factors to 1 up to ℓ, in order. It follows that

ϕm =
∑

λ ⊢m

cλ γm(ω)q(m)s(m)f [−λ]q(m).

for some nonnegative integers cλ. By the same argument as in [15, Theorem 2.1], we find that cλ

is the number of permutations in Sm of cycle type λ.
Furthermore, by repeated application of Lemma 4.3, we have

ϕm =
∑

λ ⊢m

Ym,ℓ(ω − 1) cλ γℓ(ω)q(ℓ)s(ℓ)f [−λ]q(m).

Now we need a lemma which relates these expressions to similar expressions involving h(ℓ).

Lemma 4.8. Let λ ⊢ m be a partition of length ℓ. Then

γℓ(ω)q(ℓ)s(ℓ)f [−λ]q(m) = q(ℓ)h(ℓ)f [−λ]q(m).

Proof. From (3.4), using the embedding Bℓ(ω) ↪→ B̂2m+1(ω), we have

h(ℓ) − γℓ(ω)s(ℓ) ∈ J (ℓ)
m ⊆ B̂2m+1,

where J (ℓ)
m is spanned by elements d + dta , where d is a Brauer diagram in Bℓ(ω) ⊆ B̂2m+1(ω)

and 1 ⩽ a ⩽ ℓ. It thus suffices to show that

q(ℓ)
(
d+ dta

)
f [−λ]q(ℓ) = 0 (4.12)

for all d. We now consider four cases, depending on the diagrams d and dta . Diagrams with
a shaded area are used to represent Brauer diagrams where the nodes within the shaded area
are connected by strings that lie within the shaded area; within each case, each diagram with a
shaded area has the same arrangement of strings within the shaded area.
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Case (a): In this case,

d = dta =

a

∈ Bℓ(ω).

Noting that d commutes with sab and ϵab for any b > ℓ, we have

ϵa m+a

(
d+ dta

)
f [−λ]ϵa m+a = 2ϵa m+ad f [−λ1]1 . . . f [−λℓ]ℓϵa m+a

= 2d f [−λ1]1 . . . f [−λa−1]a−1ϵa m+af [−λa]aϵa m+af [−λa+1]a+1 . . . f [−λℓ]ℓ

which is zero due to the relation ϵxyf [r]xϵxy = 0.

Case (b): In this case,

d+ dta =

a b c

+

a b c

=
...

...
...

a b c

+
... ... ...

a b c

= (sab + ϵab) d̃,

where

d̃ =

a b c

.

Note that we do not specify which diagram is which, so this case includes the cases where d is
either of these two diagrams. Observe that d̃ commutes with sa m+a. From sxyϵxy = ϵxysxy = ϵxy

and ϵxysay = ϵxyϵax we have

q(ℓ) = q(ℓ)sb m+b = sb m+bq
(ℓ) and q(ℓ)(sab + ϵab) = q(ℓ)(sa m+b + ϵa m+b). (4.13)

Also, from f [r]xϵxy = −f [r]yϵxy, it follows that

f [−λ] q(ℓ) = −f [−λ1]1 . . . f [−λb]m+b . . . f [−λℓ]ℓ q(ℓ).

Using these properties, we find

q(ℓ)
(
d+ dta

)
f [−λ]q(ℓ) = q(ℓ) (sab + ϵab) d̃ f [−λ]q(ℓ)

= −q(ℓ) (sa m+b + ϵa m+b) d̃ f [−λ1]1 . . . f [−λb]m+b . . . f [−λℓ]ℓq(ℓ).
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Using the first relation in (4.13), we find that this coincides with −q(ℓ) (d+ dta) f [−λ]q(ℓ) and
hence is equal to zero. Note that this proof does not rely on the ordering of a, b and c, and holds
even if b = c.

Case (c): In this case,

d+ dta =

a b c

+

a b c

= (sab + ϵab) d̃,

where

d̃ =

a b c

.

Then, since this d̃ also commutes with sa m+a, the computation from the previous case holds
here, so q(ℓ) (d+ dta) f [−λ]q(ℓ) = 0.

Case (d): In this case, both d and d̃ are obtained from the respective diagrams in Case (c) by
reflection about a horizontal line, so that d + dta = d̃(sab + ϵab). Again, sa m+a commutes with
d̃. The computation to show q(ℓ) (d+ dta) f [−λ]q(ℓ) = 0 in this case is similar to the one in the
previous two cases: simply replace (sab + ϵab) d̃ with d̃ (sab + ϵab), and (sa m+b + ϵa m+b) d̃ with
d̃ (sa m+b + ϵa m+b), throughout.

Note that if ℓ is odd, then h(ℓ) belongs to the subspace J (ℓ)
m . This follows by writing

2h(ℓ) = 1
ℓ!

∑
s∈Sℓ

(s+ s−1)

and using the telescoping sum

s+ s−1 = (s+ st1) − (st1 + st1t2) + (st1t2 + st1t2t3) − · · · + (st1...tℓ−1 + st1...tℓ).

Therefore, q(ℓ)h(ℓ)f [−λ]q(m) = 0 by (4.12) (in particular, ϕ1 = 0). This observation and
Lemma 4.8 complete the proof of the proposition.

We can now use Propositions 4.1, 4.6 and 4.7 to complete the proof of Theorem 2.1. The
element ϕm given in (4.10) belongs to the algebra B̂2m+1(ω) defined over C [ω]. Consider this
algebra at the critical level by taking its quotient B̂2m+1(ω)cri over the ideal generated by the
central element ω+K − 2. We conclude that both f [0]0 ϕm and f [1]0 ϕm belong to the left ideal
of the algebra B̂2m+1(ω)cri over C(ω) generated by the subspaces f [r]a B2m+1(ω) for r ⩾ 0 and
a = 0, . . . ,m. To be able to evaluate ω at M − 2n we need to verify that the elements of the left
ideal are defined over C [ω]. This is clear for f [0]0 ϕm from Propositions 4.1 and 4.7, whereas
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the formula of Proposition 4.6 implies the relation in the algebra B̂2m+1(ω)cri:

f [1]0 ϕm = −mγm(ω) q(m)φ0ms
(m)f1 . . . fm−1f [0]mq(m) 1

+mγm(ω) q(m)s(m)f1 . . . fm−1q
(m)f [0]0 1

+mγm(ω) q(m)s(m)φ0mf1 . . . fm−1f [0]mq(m) 1

+ γm(ω) q(m) s(m)f1 . . . fmq
(m)f [1]0 1.

By cyclic property 2 and relations

φ0m f [0]m = f [0]0 s0m + ϵ0m f [0]0 and f [0]m φ0m = s0m f [0]0 + f [0]0 ϵ0m,

the sum of the first and third terms on the right hand side equals

mγm(ω) q(m)s(m)f1 . . . fm−1f [0]0φ0mq
(m) 1 −mγm(ω) q(m)s(m)f1 . . . fm−1φ0m f [0]0 q(m) 1.

With this replacement, the argument used in the proof of Proposition 4.7 applies to all four terms
in the expansion of f [1]0 ϕm with obvious modifications to show that all of them are defined
over C [ω]. For example, expanding the second of the new terms, we can write it as a C-linear
combination of the expressions analogous to (4.11):

γm(ω)q(m)s(m)f [−r1]a1 . . . f [−rℓ−1]aℓ−1φ0m f [0]0 q(m),

where 1 ⩽ a1 < · · · < aℓ−1 ⩽ m−1 and the ri are positive integers with r1 + · · ·+rℓ−1 = m−1.
We can insert appropriate permutations sab after s(m) to change the indices to write such an
expression as

γm(ω)q(m)s(m)f [−r1]1 . . . f [−rℓ−1]ℓ−1φ0ℓ f [0]0 q(m).

Now apply Lemma 4.3 repeatedly to find that it equals

γℓ(ω)q(ℓ)s(ℓ)f [−r1]1 . . . f [−rℓ−1]ℓ−1φ0ℓ f [0]0 q(m)

times an element of C [ω]. Finally, Lemma 4.8 applies in the same form (the role of f [−λℓ]ℓ is
played by φ0ℓ) allowing us to replace γℓ(ω)s(ℓ) with h(ℓ) to produce an element of the algebra
B̂2m+1(ω)cri over C [ω].

By applying the homomorphism ρ defined in (3.9), we find that the image ρ(ϕm) coincides
with Φm Q

(m), where Φm is defined in (2.6). Under the evaluation ω = M − 2n, the central
element ω+K − 2 becomes K + h∨ so that by the annihilation properties of ϕm in B̂2m+1(ω)cri,
Φm belongs to the Feigin–Frenkel centre z(ôspM |2n), thus completing the proof of Theorem 2.1.

Remark 4.9. (i) It was pointed out in [15, Remark 2.5] that if M = 0 or n = 0, then all
coefficients of the polynomial in τ appearing in (4.2) coincide with the Segal–Sugawara vec-
tors Φk for certain k, up to a constant factor. A similar property is shared by the polynomial
γm(ω)q(m)s(m)f1 . . . fmq

(m) or, more generally, by

γk(ω)q(k)s(k)f1 . . . fk q
(m) = ψk0 τ

k + · · · + ψkk, (4.14)
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where we keep m fixed, while 1 ⩽ k ⩽ m. Namely, we have the relations

ψka =
(
ω + k − 2
k − a

)
ψaa.

They are easily verified by noting that for any u ∈ C the map τ 7→ u+ τ extends to an automor-
phism of the algebra B̂2m+1(ω). We apply it to both sides of (4.14) and compare the coefficients
of uk−aτ 0.

(ii) We can apply the evaluation homomorphism evz : ospM |2n[t−1] → ospM |2n which
takes t to a nonzero complex number z, to the Segal–Sugawara vectors Φm. As with the non-
super case considered in [14, Sec. 6.5], the images evz(Φm) belong to the centre of the universal
enveloping algebra U(ospM |2n); cf. [12, Thm 3.16].
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